Kazuyoshi Yoshimi

Kazuyoshi Yoshimi

Affiliation:Institute Solid State Physics, Univ. of Tokyo
Position:Project researcher (Project Team Leader of Project for Advancement of Software Usability in Materials Science (PASUMS))
Room: A602
E-mail : k-yoshimi__at__ issp.u-tokyo.ac.jp (please change from __at__ to @.)
Tel/Fax : 04-7136-3451
GitHub: https://github.com/k-yoshimi
Research Gate: https://www.researchgate.net/profile/Kazuyoshi-Yoshimi
ORCID: https://orcid.org/0000-0002-6249-6844

Recent Papers

2024

  1. Multipolar ordering from dynamical mean field theory with application to CeB6 Junya Otsuki, Kazuyoshi Yoshimi, Hiroshi Shinaoka, H. O. Jeschke, Phys. Rev. B 110, 035104 (2024). arXiv:2209.10429.
  2. Sub-photon accuracy noise reduction of single shot coherent diffraction pattern with atomic model trained autoencoder Takuto Ishikawa, Yoko Takeo, Kai Sakurai, Kyota Yoshinaga, Noboru Furuya, Yuichi Inubushi, Kensuke Tono, Yasumasa Joti, Makina Yabashi, Takashi Kimura, Kazuyoshi YoshimiOptics Express Vol. 32, Issue 10,
    pp. 18301-18316 (2024)
    .
  3. Orbital hybridization of donor and acceptor to enhance the conductivity of mixed-stack complexes,  Tomoko Fujino, Ryohei Kameyama, Kota Onozuka, Kazuki Matsuo, Shun Dekura, Tatsuya Miyamoto, Zijing Guo, Hiroshi Okamoto, Toshikazu Nakamura, Kazuyoshi Yoshimi, Shunsuke Kitou, Takahisa Arima, Hiroyasu Sato, Kaoru Yamamoto, Akira Takahashi, Hiroshi Sawa, Yuiga Nakamura, Hatsumi Mori, Nature Communications  15,  3028 (2024). プレスリリース記事「電気が流れる交互積層型電荷移動錯体の実現 ―常識を覆す、大量合成可能な新種の有機伝導体材料―」(2024/4/16掲載)
  4. Compensated Ferrimagnets with Colossal Spin Splitting in Organic Compounds Taiki Kawamura, Kazuyoshi Yoshimi, Kenichiro Hashimoto, Akito Kobayashi, Takahiro Misawa, Phys. Rev. Lett. 132, 156502 (2024). arXiv:2312.00367 . プレスリリース記事「スピン分裂を示す新しいタイプの反強磁性体を発見 ―反強磁性体スピントロニクスに新しい潮流―」(2024/4/11掲載)
  5. Update of HΦ: Newly added functions and methods in versions 2 and 3 Kota Ido, Mitsuaki Kawamura, Yuichi Motoyama, Kazuyoshi Yoshimi, Youhei Yamaji, Synge Todo, Naoki Kawashima, Takahiro Misawa, Comp. Phys. Commun. 298, 109093 (2024), arXiv:2307.13222.
  6. H-wave — A Python package for the Hartree-Fock approximation and the random phase approximation Tatsumi Aoyama, Kazuyoshi Yoshimi, Kota Ido, Yuichi Motoyama, Taiki Kawamura, Takahiro Misawa, Takeo Kato, Akito Kobayashi, Comp. Phys. Commun. 298, 109087 (2024). arXiv:2308.00324.

2023

  1. Single-crystalline oligomer-based conductors modeling the doped poly(3,4-ethylenedioxythiophene) family
    Tomoko Fujino, Ryohei Kameyama, Kota Onozuka, Kazuki Matsuo, Shun Dekura, Kazuyoshi Yoshimi, and Hatsumi Mori, Faraday Discuss.(2023), The Royal Society of Chemistry.
  2. Configuration sampling in multi-component multi-sublattice systems enabled by ab Initio Configuration Sampling Toolkit (abICS)
    Shusuke Kasamatsu, Yuichi Motoyama, Kazuyoshi Yoshimi, Tatsumi Aoyama, Science and Technology of Advanced Materials: Methods, DOI: 10.1080/27660400.2023.2284128.
  3. Helical magnetic state in the vicinity of the pressure-induced superconducting phase in MnP
    S. E. Dissanayake, M. Matsuda, K. Yoshimi, S. Kasamatsu, F. Ye, S. Chi, W. Steinhardt, G. Fabbris, S. Haravifard, J.-G. Cheng, J.-Q. Yan, J. Gouchi, Y. Uwatoko, Phys. Rev. Research 5, 043026(2023).
  4. Metallic State of a Mixed-sequence Oligomer Salt that Models Doped PEDOT Family
    Kota Onozuka, Tomoko Fujino, Ryohei Kameyama, Shun Dekura, Kazuyoshi Yoshimi, Toshikazu Nakamura, Tatsuya Miyamoto, Takashi Yamakawa, Hiroshi Okamoto, Hiroyasu Sato, Taisuke Ozaki, Hatsumi Mori, J. Am. Chem. Soc. 2023, 145, 28, 15152–15161 (https://doi.org/10.1021/jacs.3c01522).
  5. Precise Control of the Molecular Arrangement of Organic Semiconductors for High Charge Carrier Mobility
    Ryota Akai, Kouki Oka, Shun Dekura, Kazuyoshi Yoshimi, Hatsumi Mori, Ryosuke Nishikubo, Akinori Saeki, and Norimitsu Tohnai, J. Phys. Chem. Lett. 2023, 14, 14, 3461–3467(2023).
  6. Interface tool from Wannier90 to RESPACK: wan2respack
    Kensuke Kurita, Takahiro Misawa, Kazuyoshi Yoshimi, Kota Ido, Takashi Koretsune, Comp. Phys. Commun. 292, 108854 (2023).
  7. (Editor’s suggestions) Comprehensive ab initio investigation of the phase diagram of quasi-one-dimensional molecular solids
    Kazuyoshi Yoshimi, Takahiro Misawa, Takao Tsumuraya, Hitoshi Seo, Phys. Rev. Lett. 131, 036401 (2023).
  8. Data analysis on ab initio effective Hamiltonians of iron-based superconductors
    Kota Ido, Yuichi Motoyama, Kazuyoshi Yoshimi, Takahiro Misawa, J.Phys.Soc.Jpn. 92, 064702 (2023) .
  9. Gap opening mechanism for correlated Dirac electrons in organic compounds α-(BEDT-TTF)_2I_3 and α-(BEDT-TSeF)_2I_3
    Daigo Ohki, Kazuyoshi Yoshimi, Akito Kobayashi, Takahiro Misawa, Phys. Rev. B 107, L041108 (2023).
  10. sparse-ir: optimal compression and sparse sampling of many-body propagators
    Markus Wallerberger, Samuel Badr, Shintaro Hoshino, Fumiya Kakizawa, Takashi Koretsune, Yuki Nagai, Kosuke Nogaki, Takuya Nomoto, Hitoshi Mori, Junya Otsuki, Soshun Ozaki, Rihito Sakurai, Constanze Vogel, Niklas Witt, Kazuyoshi Yoshimi, Hiroshi Shinaoka, SoftwareX, Volume 21, 101266 (2023).

2022

  1. MateriApps LIVE! and MateriApps Installer: Environment for starting and scaling up materials science simulations
    Yuichi Motoyama, Kazuyoshi Yoshimi, Takeo Kato, Synge Todo, SoftwareX, Volume 20, 101210, December 2022.
  2. Data-analysis software framework 2DMAT and its application to experimental measurements for two-dimensional material structures
    Yuichi Motoyama, Kazuyoshi Yoshimi, Harumichi Iwamoto, Hayato Ichinose, Takeo Hoshi, Computer Physics Communications, 280, 108465/1-11 (2022).
  3. Unconventional dual 1D-2D quantum spin liquid revealed by ab initio studies on organic solids family
    Kota Ido, Kazuyoshi Yoshimi, Takahiro Misawa, Masatoshi Imada, Quantum Mater. 7, 48 (2022).
  4. TeNeS: Tensor Network Solver for Quantum Lattice Systems
    Yuichi Motoyama, Tsuyoshi Okubo, Kazuyoshi Yoshimi, Satoshi Morita, Takeo Kato, Naoki Kawashima, Computer Physics Communications 279, 108437 (2022).
  5. sim-trhepd-rheed — Open-source simulator of total-reflection high-energy positron diffraction (TRHEPD) and reflection high-energy electron diffraction (RHEED)
    Takashi Hanada, Yuichi Motoyama, Kazuyoshi Yoshimi, Takeo Hoshi,Computer Physics Communications 277, 108371 (2022).
  6. Bayesian optimization package: PHYSBO
    Yuichi Motoyama, Ryo Tamura, Kazuyoshi Yoshimi, Kei Terayama, Tsuyoshi Ueno, Koji Tsuda, Computer Physics Communications 278, 108405 (2022).
  7. Interaction-induced quantum spin Hall insulator in the organic Dirac electron system α-(BEDT-TSeF)2I3
    Daigo Ohki, Kazuyoshi Yoshimi, Akito Kobayashi, Phys. Rev. B 105, 205123 (2022).
  8. Facilitating ab initio configurational sampling of multicomponent solids using an on-lattice neural network model and active learning
    Shusuke Kasamatsu, Yuichi Motoyama, Kazuyoshi Yoshimi, Ushio Matsumoto, Akihide Kuwabara, Takafumi Ogawa, J. Chem. Phys. 157, 104114 (2022).
  9. Robust analytic continuation combining the advantages of the sparse modeling approach and Padé approximation
    Yuichi Motoyama, Kazuyoshi Yoshimi, Junya Otsuki, Phys. Rev. B 105, 035139 (2022).
  10. Efficient ab initio many-body calculations based on sparse modeling of Matsubara Green’s function
    Hiroshi Shinaoka, Naoya Chikano, Emanuel Gull, Jia Li, Takuya Nomoto, Junya Otsuki, Markus Wallerberger, Tianchun Wang, Kazuyoshi Yoshimi, SciPost Phys. Lect. Notes 63 (2022).

2021

  1. Ab initio derivation and exact-diagonalization analysis of low-energy effective Hamiltonians for β′-X[Pd(dmit)2]2
    Kazuyoshi Yoshimi, Takao Tsumuraya, Takahiro Misawa, Phys. Rev. Research 3, 043224(2021).
  2. Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot
    H. Kiyama, K. Yoshimi, T. Kato, T. Nakajima, A. Oiwa, and S. Tarucha, Phys. Rev. Lett. 127, 086802 (2021).
  3. Multiple-magnon excitations shape the spin spectrum of cuprate parent compounds
    Davide Betto, Roberto Fumagalli, Leonardo Martinelli, Matteo Rossi, Riccardo Piombo, Kazuyoshi Yoshimi, Daniele Di Castro, Emiliano Di Gennaro, Alessia Sambri, Doug Bonn, George A. Sawatzky, Lucio Braicovich, Nicholas B. Brookes, José Lorenzana, and Giacomo Ghiringhelli,Phys. Rev. B 103, L140409 (2021).
  4. DSQSS: Discrete Space Quantum Systems Solver
    Yuichi Motoyama, Kazuyoshi Yoshimi, Akiko Masaki-Kato, Takeo Kato, Naoki Kawashima, Computer Physics Communications 264 107944 (2021).
  5. DCore: Integrated DMFT software for correlated electrons
    Hiroshi Shinaoka, Junya Otsuki, Mitsuaki Kawamura, Nayuta Takemori, Kazuyoshi Yoshimi,
    SciPost Phys. 10, 117 (2021)..
  6. Kω– Open-source library for the shifted Krylov subspace method
    Takeo Hoshi, Mitsuaki Kawamura, Kazuyoshi Yoshimi, Yuichi Motoyama, Takahiro Misawa, Youhei Yamaji, Synge Todo, Naoki Kawashima, Tomohiro Sogabe, Computer Physics Communications 258, 107536 (2021)
  7. RESPACK: An ab initio tool for derivation of effective low-energy model of material
    Kazuma Nakamura, Yoshihide Yoshimoto, Yusuke Nomura, Terumasa Tadano, Mitsuaki Kawamura, Taichi Kosugi, Kazuyoshi Yoshimi, Takahiro Misawa, Yuichi Motoyama, Computer Physics Communications 261, 107781 (2021).

2020

  1. Electronic correlation and geometrical frustration in molecular solids: A systematic ab initio study of β’-X[Pd(dmit)_2]_2
    T. Misawa, K. Yoshimi, and T. Tsumuraya, Phys. Rev. Research 2, 032072(R) (2020)
  2. Transport properties of organic Dirac electron system α-(BEDT-TSeF)2I3
    Daigo Ohki, Kazuyoshi Yoshimi, Akito Kobayashi, Phys. Rev. B 102, 235116 (2020).
  3. Finite Temperature Properties of Geometrically Charge Frustrated Systems
    Kazuyoshi Yoshimi, Makoto Naka, Hitoshi Seo, J. Phys. Soc. Jpn. 89, 034003 (2020).
  4. Sparse sampling and tensor network representation of two-particle Green’s functions
    H Shinaoka, D Geffroy, M Wallerberger, J Otsuki, K Yoshimi, E Gulll, Jan Kuneš, SciPost Physics 8 (1), 012 (2020) .
2019
  1. Sparse Modeling in Quantum Many-Body Problems
    Junya Otsuki, Masayuki Ohzeki, Hiroshi Shinaoka, Kazuyoshi YoshimiJ. Phys. Soc. Jpn. 89, 012001 (2019).
  2. SpM: Sparse modeling tool for analytic continuation of imaginary-time Green’s function
    Kazuyoshi Yoshimi, Junya Otsuki, Yuichi Motoyama, Masayuki Ohzeki, Hiroshi Shinaoka, Computer Physis. Communications 244, 319-323 (2019).
  3. Strong-Coupling Formula of Momentum-Dependent Susceptibilities in the Dynamical Mean-Field Theory
    Junya Otsuki, Kazuyoshi Yoshimi, Hiroshi Shinaoka, Yusuke Nomura, Phys. Rev. B 99, 165134 (2019).
  4. irbasis: Open-source database and software for intermediate-representation basis functions of imaginary-time Green’s function
    N. Chikano, K. Yoshimi, J. Otsuki, H. Shinaoka. Computer Physic Communications 240, 181-188 (2019) .
  5. mVMC – Open-source software for many-variable variational Monte Carlo method
    Takahiro Misawa, Satoshi Morita, Kazuyoshi Yoshimi, Mitsuaki Kawamura, Yuichi Motoyama, Kota Ido, Takahiro Ohgoe, Masatoshi Imada, Takeo Kato. Computer Physics Communications 236,447-462 (2019).

2018

  1. Overcomplete compact representation of two-particle Green’s functions
    Hiroshi Shinaoka, Junya Otsuki, Kristjan Haule, Markus Wallerberger, Emanuel Gull, Kazuyoshi Yoshimi , and Masayuki Ohzeki. Phys. Rev. B 97, 205111 (2018).

2017

  1. Dimer-Mott and charge-ordered insulating states in the quasi-one-dimensional organic conductors $\delta’_P$-$\delta’_C$-(BPDT-TTF)$_2$ICl$_2$
    R. Kobayashi, K. Hashimoto, N. Yoneyama, K. Yoshimi, Y. Motoyama, S. Iguchi, Y. Ikemoto, T. Moriwaki, H. Taniguchi, T. Sasaki, Phys. Rev. B 96, 115112 (2017).
  2. Quantum lattice solver HΦ
    Mitsuaki Kawamura, Kazuyoshi Yoshimi, Takahiro Misawa, Youhei Yamaji, Synge Todo, Naoki Kawashima, Computational Physics Communications, 217, 180-192 (2017).
  3. Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data
    Junya Otsuki, Masayuki Ohzeki, Hiroshi Shinaoka, Kazuyoshi YoshimiPhys. Rev. E 95, 061302(R) (2017) .
  4. Compression of imaginary-time data using intermediate representation of analytical continuation
    Hiroshi Shinaoka, Junya Otsuki, Masayuki Ohzeki, Kazuyoshi Yoshimi, Phys. Rev. B 96, 035147 (2017) .

arXiv

    1. Surface structure of the 3×3-Si phase on Al(111), studied by the multiple usages of positron diffraction and core-level photoemission spectroscopy
      Yusuke Sato, Yuki Fukaya, Akito Nakano, Takeo Hoshi, Chi-Cheng Lee, Kazuyoshi Yoshimi, Taisuke Ozaki, Takeru Nakashima, Yasunobu Ando, Hiroaki Aoyama, Tadashi Abukawa, Yuki Tsujikawa, Masafumi Horio, Masahito Niibe, Fumio Komori, Iwao Matsuda,arXiv:2409.19666.
    2. Robust analytic continuation using sparse modeling approach imposed by semi-positive definiteness for multi-orbital systems
      Yuichi Motoyama, Hiroshi Shinaoka, Junya Otsuki, Kazuyoshi Yoshimi, arXiv:2409.01509.
    3. Combined X-ray diffraction, electrical resistivity, and $ab$ $initio$ study of (TMTTF)$_2$PF$_6$ under pressure: implications to the unified phase diagram
      Miho Itoi, Kazuyoshi Yoshimi, Hanming Ma, Takahiro Misawa, Takao Tsumuraya, Dilip Bhoi, Tokutaro Komatsu, Hatsumi Mori, Yoshiya Uwatoko, Hitoshi Seo, arXiv:2403.13816.
    4. Fermi surface reconstruction due to the orthorhombic distortion in Dirac semimetal YbMnSb_2
      Dilip Bhoi, Feng Ye, Hanming Ma, Xiaoling Shen, Arvind Maurya, Shusuke Kasamatsu, Takahiro Misawa, Kazuyoshi Yoshimi, Taro Nakajima, Masaaki Matsuda, Yoshiya Uwatoko, arXiv:2306.12732.
    5. Compressed Sensing of Compton Profiles for Fermi Surface Reconstruction: Concept and Implementation
      J. Otsuki, K. Yoshimi, Y. Nakanishi-Ohno, M. Sekania, L. Chioncel, M. Mizumaki, arXiv:2210.07701.