HΦ  3.1.0
Orthorhombic.c File Reference

Standard mode for the orthorhombic lattice. More...

#include "StdFace_vals.h"
#include "StdFace_ModelUtil.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <complex.h>
#include <string.h>

Go to the source code of this file.

Functions

void StdFace_Orthorhombic (struct StdIntList *StdI)
 Setup a Hamiltonian for the Simple Orthorhombic lattice. More...
 

Detailed Description

Standard mode for the orthorhombic lattice.

Definition in file Orthorhombic.c.

Function Documentation

◆ StdFace_Orthorhombic()

void StdFace_Orthorhombic ( struct StdIntList StdI)

Setup a Hamiltonian for the Simple Orthorhombic lattice.

Author
Mitsuaki Kawamura (The University of Tokyo)

(1) Compute the shape of the super-cell and sites in the super-cell

(2) check & store parameters of Hamiltonian

(3) Set local spin flag (StdIntList::locspinflag) and the number of sites (StdIntList::nsite)

(4) Compute the upper limit of the number of Transfer & Interaction and malloc them.

(5) Set Transfer & Interaction

Parameters
[in,out]StdI

Definition at line 33 of file Orthorhombic.c.

References StdIntList::a, StdIntList::Cell, StdIntList::D, StdIntList::direct, StdIntList::Gamma, StdIntList::h, StdIntList::J, StdIntList::J0, StdIntList::J0All, StdIntList::J0p, StdIntList::J0pAll, StdIntList::J1, StdIntList::J1All, StdIntList::J1p, StdIntList::J1pAll, StdIntList::J2, StdIntList::J2All, StdIntList::J2p, StdIntList::J2pAll, StdIntList::JAll, StdIntList::Jpp, StdIntList::JppAll, StdIntList::K, StdIntList::length, StdIntList::locspinflag, StdIntList::model, StdIntList::mu, StdIntList::NCell, StdIntList::nsite, StdIntList::NsiteUC, StdIntList::phase, StdIntList::S2, StdFace_Coulomb(), StdFace_FindSite(), StdFace_GeneralJ(), StdFace_Hopping(), StdFace_HubbardLocal(), StdFace_InitSite(), StdFace_InputCoulombV(), StdFace_InputHopp(), StdFace_InputSpin(), StdFace_InputSpinNN(), StdFace_MagField(), StdFace_MallocInteractions(), StdFace_NotUsed_c(), StdFace_NotUsed_d(), StdFace_NotUsed_i(), StdFace_NotUsed_J(), StdFace_PrintGeometry(), StdFace_PrintVal_c(), StdFace_PrintVal_d(), StdFace_PrintVal_i(), StdFace_PrintXSF(), StdIntList::t, StdIntList::t0, StdIntList::t0p, StdIntList::t1, StdIntList::t1p, StdIntList::t2, StdIntList::t2p, StdIntList::tau, StdIntList::tp, StdIntList::tpp, StdIntList::U, StdIntList::V, StdIntList::V0, StdIntList::V0p, StdIntList::V1, StdIntList::V1p, StdIntList::V2, StdIntList::V2p, StdIntList::Vp, and StdIntList::Vpp.

Referenced by StdFace_main().

36 {
37  int isite, jsite, ntransMax, nintrMax;
38  int iL, iW, iH, kCell;
39  FILE *fp;
40  double complex Cphase;
41  double dR[3];
42 
46  fp = fopen("lattice.xsf", "w");
47 
48  StdI->NsiteUC = 1;
49 
50  fprintf(stdout, " @ Lattice Size & Shape\n\n");
51 
52  StdFace_PrintVal_d("a", &StdI->a, 1.0);
53  StdFace_PrintVal_d("Wlength", &StdI->length[0], StdI->a);
54  StdFace_PrintVal_d("Llength", &StdI->length[1], StdI->a);
55  StdFace_PrintVal_d("Hlength", &StdI->length[2], StdI->a);
56  StdFace_PrintVal_d("Wx", &StdI->direct[0][0], StdI->length[0]);
57  StdFace_PrintVal_d("Wy", &StdI->direct[0][1], 0.0);
58  StdFace_PrintVal_d("Wz", &StdI->direct[0][2], 0.0);
59  StdFace_PrintVal_d("Lx", &StdI->direct[1][0], 0.0);
60  StdFace_PrintVal_d("Ly", &StdI->direct[1][1], StdI->length[1]);
61  StdFace_PrintVal_d("Lz", &StdI->direct[1][2], 0.0);
62  StdFace_PrintVal_d("Hx", &StdI->direct[2][0], 0.0);
63  StdFace_PrintVal_d("Hy", &StdI->direct[2][1], 0.0);
64  StdFace_PrintVal_d("Hz", &StdI->direct[2][2], StdI->length[1]);
65 
66  StdFace_PrintVal_d("phase0", &StdI->phase[0], 0.0);
67  StdFace_PrintVal_d("phase1", &StdI->phase[1], 0.0);
68  StdFace_PrintVal_d("phase2", &StdI->phase[2], 0.0);
69 
70  StdFace_InitSite(StdI, fp, 3);
71  StdI->tau[0][0] = 0.0; StdI->tau[0][1] = 0.0; ; StdI->tau[0][2] = 0.0;
75  fprintf(stdout, "\n @ Hamiltonian \n\n");
76  StdFace_NotUsed_d("K", StdI->K);
77  StdFace_PrintVal_d("h", &StdI->h, 0.0);
78  StdFace_PrintVal_d("Gamma", &StdI->Gamma, 0.0);
79 
80  if (strcmp(StdI->model, "spin") == 0 ) {
81  StdFace_PrintVal_i("2S", &StdI->S2, 1);
82  StdFace_PrintVal_d("D", &StdI->D[2][2], 0.0);
83  StdFace_InputSpinNN(StdI, StdI->J0, StdI->J0All, "J0");
84  StdFace_InputSpinNN(StdI, StdI->J1, StdI->J1All, "J1");
85  StdFace_InputSpinNN(StdI, StdI->J2, StdI->J2All, "J2");
86  StdFace_InputSpin(StdI, StdI->J0p, StdI->J0pAll, "J0'");
87  StdFace_InputSpin(StdI, StdI->J1p, StdI->J1pAll, "J1'");
88  StdFace_InputSpin(StdI, StdI->J2p, StdI->J2pAll, "J2'");
89  StdFace_InputSpin(StdI, StdI->Jpp, StdI->JppAll, "J''");
90 
91  StdFace_NotUsed_d("mu", StdI->mu);
92  StdFace_NotUsed_d("U", StdI->U);
93  StdFace_NotUsed_c("t", StdI->t);
94  StdFace_NotUsed_c("t0", StdI->t0);
95  StdFace_NotUsed_c("t1", StdI->t1);
96  StdFace_NotUsed_c("t2", StdI->t2);
97  StdFace_NotUsed_c("t'", StdI->tp);
98  StdFace_NotUsed_c("t0'", StdI->t0p);
99  StdFace_NotUsed_c("t1'", StdI->t1p);
100  StdFace_NotUsed_c("t2'", StdI->t2p);
101  StdFace_NotUsed_c("t''", StdI->tpp);
102  StdFace_NotUsed_d("V", StdI->V);
103  StdFace_NotUsed_d("V0", StdI->V0);
104  StdFace_NotUsed_d("V1", StdI->V1);
105  StdFace_NotUsed_d("V'", StdI->Vp);
106  }/*if (strcmp(StdI->model, "spin") == 0 )*/
107  else {
108  StdFace_PrintVal_d("mu", &StdI->mu, 0.0);
109  StdFace_PrintVal_d("U", &StdI->U, 0.0);
110  StdFace_InputHopp(StdI, &StdI->t0, "t0");
111  StdFace_InputHopp(StdI, &StdI->t1, "t1");
112  StdFace_InputHopp(StdI, &StdI->t2, "t2");
113  StdFace_PrintVal_c("t0'", &StdI->t0p, 0.0);
114  StdFace_PrintVal_c("t1'", &StdI->t1p, 0.0);
115  StdFace_PrintVal_c("t2'", &StdI->t2p, 0.0);
116  StdFace_InputCoulombV(StdI, &StdI->V0, "V0");
117  StdFace_InputCoulombV(StdI, &StdI->V1, "V1");
118  StdFace_InputCoulombV(StdI, &StdI->V2, "V2");
119  StdFace_PrintVal_d("V0'", &StdI->V0p, 0.0);
120  StdFace_PrintVal_d("V1'", &StdI->V1p, 0.0);
121  StdFace_PrintVal_d("V2'", &StdI->V2p, 0.0);
122 
123  StdFace_NotUsed_J("J0", StdI->J0All, StdI->J0);
124  StdFace_NotUsed_J("J1", StdI->J1All, StdI->J1);
125  StdFace_NotUsed_J("J2", StdI->J2All, StdI->J2);
126  StdFace_NotUsed_J("J0'", StdI->J0pAll, StdI->J0p);
127  StdFace_NotUsed_J("J1'", StdI->J1pAll, StdI->J1p);
128  StdFace_NotUsed_J("J2'", StdI->J2pAll, StdI->J2p);
129  StdFace_NotUsed_J("J''", StdI->JppAll, StdI->Jpp);
130  StdFace_NotUsed_d("D", StdI->D[2][2]);
131 
132  if (strcmp(StdI->model, "hubbard") == 0 ) {
133  StdFace_NotUsed_i("2S", StdI->S2);
134  StdFace_NotUsed_J("J", StdI->JAll, StdI->J);
135  }/*if (strcmp(StdI->model, "hubbard") == 0 )*/
136  else {
137  StdFace_PrintVal_i("2S", &StdI->S2, 1);
138  StdFace_InputSpin(StdI, StdI->J, StdI->JAll, "J");
139  }/*if (model != "hubbard")*/
140 
141  }/*if (model != "spin")*/
142  fprintf(stdout, "\n @ Numerical conditions\n\n");
147  StdI->nsite = StdI->NsiteUC * StdI->NCell;
148  if (strcmp(StdI->model, "kondo") == 0 ) StdI->nsite *= 2;
149  StdI->locspinflag = (int *)malloc(sizeof(int) * StdI->nsite);
150 
151  if(strcmp(StdI->model, "spin") == 0 )
152  for (isite = 0; isite < StdI->nsite; isite++) StdI->locspinflag[isite] = StdI->S2;
153  else if(strcmp(StdI->model, "hubbard") == 0 )
154  for (isite = 0; isite < StdI->nsite; isite++) StdI->locspinflag[isite] = 0;
155  else
156  for (iL = 0; iL < StdI->nsite / 2; iL++) {
157  StdI->locspinflag[iL] = StdI->S2;
158  StdI->locspinflag[iL + StdI->nsite / 2] = 0;
159  }
163  if (strcmp(StdI->model, "spin") == 0 ) {
164  ntransMax = StdI->nsite * (StdI->S2 + 1/*h*/ + 2 * StdI->S2/*Gamma*/);
165  nintrMax = StdI->NCell * (StdI->NsiteUC/*D*/ + 3/*J*/ + 6/*J'*/ + 4/*J''*/)
166  * (3 * StdI->S2 + 1) * (3 * StdI->S2 + 1);
167  }
168  else {
169  ntransMax = StdI->NCell * 2/*spin*/ * (2 * StdI->NsiteUC/*mu+h+Gamma*/ + 6/*t*/ + 12/*t'*/ + 8/*t''*/);
170  nintrMax = StdI->NCell * (StdI->NsiteUC/*U*/ + 4 * (3/*V*/ + 6/*V'*/ + 4/*V''*/));
171 
172  if (strcmp(StdI->model, "kondo") == 0) {
173  ntransMax += StdI->nsite / 2 * (StdI->S2 + 1/*h*/ + 2 * StdI->S2/*Gamma*/);
174  nintrMax += StdI->nsite / 2 * (3 * StdI->S2 + 1) * (3 * StdI->S2 + 1);
175  }/*if (strcmp(StdI->model, "kondo") == 0)*/
176  }
177 
178  StdFace_MallocInteractions(StdI, ntransMax, nintrMax);
182  for (kCell = 0; kCell < StdI->NCell; kCell++){
183 
184  iW = StdI->Cell[kCell][0];
185  iL = StdI->Cell[kCell][1];
186  iH = StdI->Cell[kCell][2];
187  /*
188  (1) Local term
189  */
190  isite = kCell;
191  if (strcmp(StdI->model, "kondo") == 0 ) isite += StdI->NCell;
192 
193  if (strcmp(StdI->model, "spin") == 0 ) {
194  StdFace_MagField(StdI, StdI->S2, -StdI->h, -StdI->Gamma, isite);
195  StdFace_GeneralJ(StdI, StdI->D, StdI->S2, StdI->S2, isite, isite);
196  }/*if (strcmp(StdI->model, "spin") == 0 )*/
197  else {
198  StdFace_HubbardLocal(StdI, StdI->mu, -StdI->h, -StdI->Gamma, StdI->U, isite);
199  if (strcmp(StdI->model, "kondo") == 0 ) {
200  jsite = kCell;
201  StdFace_GeneralJ(StdI, StdI->J, 1, StdI->S2, isite, jsite);
202  StdFace_MagField(StdI, StdI->S2, -StdI->h, -StdI->Gamma, jsite);
203  }/*if (strcmp(StdI->model, "kondo") == 0 )*/
204  }
205  /*
206  (2) Nearest neighbor along W
207  */
208  StdFace_FindSite(StdI, iW, iL, iH, 1, 0, 0, 0, 0, &isite, &jsite, &Cphase, dR);
209 
210  if (strcmp(StdI->model, "spin") == 0 ) {
211  StdFace_GeneralJ(StdI, StdI->J0, StdI->S2, StdI->S2, isite, jsite);
212  }/*if (strcmp(StdI->model, "spin") == 0 )*/
213  else {
214  StdFace_Hopping(StdI, Cphase * StdI->t0, isite, jsite, dR);
215  StdFace_Coulomb(StdI, StdI->V0, isite, jsite);
216  }
217  /*
218  (3) Nearest neighbor along L
219  */
220  StdFace_FindSite(StdI, iW, iL, iH, 0, 1, 0, 0, 0, &isite, &jsite, &Cphase, dR);
221 
222  if (strcmp(StdI->model, "spin") == 0) {
223  StdFace_GeneralJ(StdI, StdI->J1, StdI->S2, StdI->S2, isite, jsite);
224  }
225  else {
226  StdFace_Hopping(StdI, Cphase * StdI->t1, isite, jsite, dR);
227  StdFace_Coulomb(StdI, StdI->V1, isite, jsite);
228  }
229  /*
230  (4) Nearest neighbor along H
231  */
232  StdFace_FindSite(StdI, iW, iL, iH, 0, 0, 1, 0, 0, &isite, &jsite, &Cphase, dR);
233 
234  if (strcmp(StdI->model, "spin") == 0) {
235  StdFace_GeneralJ(StdI, StdI->J2, StdI->S2, StdI->S2, isite, jsite);
236  }
237  else {
238  StdFace_Hopping(StdI, Cphase * StdI->t2, isite, jsite, dR);
239  StdFace_Coulomb(StdI, StdI->V2, isite, jsite);
240  }
241  /*
242  (5) Second nearest neighbor along +L+H
243  */
244  StdFace_FindSite(StdI, iW, iL, iH, 0, 1, 1, 0, 0, &isite, &jsite, &Cphase, dR);
245 
246  if (strcmp(StdI->model, "spin") == 0 ) {
247  StdFace_GeneralJ(StdI, StdI->J0p, StdI->S2, StdI->S2, isite, jsite);
248  }/*if (strcmp(StdI->model, "spin") == 0 )*/
249  else {
250  StdFace_Hopping(StdI, Cphase * StdI->t0p, isite, jsite, dR);
251  StdFace_Coulomb(StdI, StdI->V0p, isite, jsite);
252  }
253  /*
254  (6) Second nearest neighbor along +L-H
255  */
256  StdFace_FindSite(StdI, iW, iL, iH, 0, 1, -1, 0, 0, &isite, &jsite, &Cphase, dR);
257 
258  if (strcmp(StdI->model, "spin") == 0) {
259  StdFace_GeneralJ(StdI, StdI->J0p, StdI->S2, StdI->S2, isite, jsite);
260  }/*if (strcmp(StdI->model, "spin") == 0 )*/
261  else {
262  StdFace_Hopping(StdI, Cphase * StdI->t0p, isite, jsite, dR);
263  StdFace_Coulomb(StdI, StdI->V0p, isite, jsite);
264  }
265  /*
266  (7) Second nearest neighbor along +H+W
267  */
268  StdFace_FindSite(StdI, iW, iL, iH, 1, 0, 1, 0, 0, &isite, &jsite, &Cphase, dR);
269 
270  if (strcmp(StdI->model, "spin") == 0) {
271  StdFace_GeneralJ(StdI, StdI->J1p, StdI->S2, StdI->S2, isite, jsite);
272  }/*if (strcmp(StdI->model, "spin") == 0 )*/
273  else {
274  StdFace_Hopping(StdI, Cphase * StdI->t1p, isite, jsite, dR);
275  StdFace_Coulomb(StdI, StdI->V1p, isite, jsite);
276  }
277  /*
278  (8) Second nearest neighbor along +H-W
279  */
280  StdFace_FindSite(StdI, iW, iL, iH, -1, 0, 1, 0, 0, &isite, &jsite, &Cphase, dR);
281 
282  if (strcmp(StdI->model, "spin") == 0) {
283  StdFace_GeneralJ(StdI, StdI->J1p, StdI->S2, StdI->S2, isite, jsite);
284  }/*if (strcmp(StdI->model, "spin") == 0 )*/
285  else {
286  StdFace_Hopping(StdI, Cphase * StdI->t1p, isite, jsite, dR);
287  StdFace_Coulomb(StdI, StdI->V1p, isite, jsite);
288  }
289  /*
290  (9) Second nearest neighbor along +W+L
291  */
292  StdFace_FindSite(StdI, iW, iL, iH, 1, 1, 0, 0, 0, &isite, &jsite, &Cphase, dR);
293 
294  if (strcmp(StdI->model, "spin") == 0) {
295  StdFace_GeneralJ(StdI, StdI->J2p, StdI->S2, StdI->S2, isite, jsite);
296  }/*if (strcmp(StdI->model, "spin") == 0 )*/
297  else {
298  StdFace_Hopping(StdI, Cphase * StdI->t2p, isite, jsite, dR);
299  StdFace_Coulomb(StdI, StdI->V2p, isite, jsite);
300  }
301  /*
302  (10) Second nearest neighbor along +W-L
303  */
304  StdFace_FindSite(StdI, iW, iL, iH, 1, -1, 0, 0, 0, &isite, &jsite, &Cphase, dR);
305 
306  if (strcmp(StdI->model, "spin") == 0) {
307  StdFace_GeneralJ(StdI, StdI->J2p, StdI->S2, StdI->S2, isite, jsite);
308  }/*if (strcmp(StdI->model, "spin") == 0 )*/
309  else {
310  StdFace_Hopping(StdI, Cphase * StdI->t2p, isite, jsite, dR);
311  StdFace_Coulomb(StdI, StdI->V2p, isite, jsite);
312  }
313  /*
314  (11) Third nearest neighbor along +W+L+H
315  */
316  StdFace_FindSite(StdI, iW, iL, iH, 1, 1, 1, 0, 0, &isite, &jsite, &Cphase, dR);
317 
318  if (strcmp(StdI->model, "spin") == 0) {
319  StdFace_GeneralJ(StdI, StdI->Jpp, StdI->S2, StdI->S2, isite, jsite);
320  }/*if (strcmp(StdI->model, "spin") == 0 )*/
321  else {
322  StdFace_Hopping(StdI, Cphase * StdI->tpp, isite, jsite, dR);
323  StdFace_Coulomb(StdI, StdI->Vpp, isite, jsite);
324  }
325  /*
326  (12) Third nearest neighbor along -W+L+H
327  */
328  StdFace_FindSite(StdI, iW, iL, iH, -1, 1, 1, 0, 0, &isite, &jsite, &Cphase, dR);
329 
330  if (strcmp(StdI->model, "spin") == 0) {
331  StdFace_GeneralJ(StdI, StdI->Jpp, StdI->S2, StdI->S2, isite, jsite);
332  }/*if (strcmp(StdI->model, "spin") == 0 )*/
333  else {
334  StdFace_Hopping(StdI, Cphase * StdI->tpp, isite, jsite, dR);
335  StdFace_Coulomb(StdI, StdI->Vpp, isite, jsite);
336  }
337  /*
338  (13) Third nearest neighbor along +W-L+H
339  */
340  StdFace_FindSite(StdI, iW, iL, iH, 1, -1, 1, 0, 0, &isite, &jsite, &Cphase, dR);
341 
342  if (strcmp(StdI->model, "spin") == 0) {
343  StdFace_GeneralJ(StdI, StdI->Jpp, StdI->S2, StdI->S2, isite, jsite);
344  }/*if (strcmp(StdI->model, "spin") == 0 )*/
345  else {
346  StdFace_Hopping(StdI, Cphase * StdI->tpp, isite, jsite, dR);
347  StdFace_Coulomb(StdI, StdI->Vpp, isite, jsite);
348  }
349  /*
350  (14) Third nearest neighbor along +W+L-H
351  */
352  StdFace_FindSite(StdI, iW, iL, iH, 1, 1, -1, 0, 0, &isite, &jsite, &Cphase, dR);
353 
354  if (strcmp(StdI->model, "spin") == 0) {
355  StdFace_GeneralJ(StdI, StdI->Jpp, StdI->S2, StdI->S2, isite, jsite);
356  }/*if (strcmp(StdI->model, "spin") == 0 )*/
357  else {
358  StdFace_Hopping(StdI, Cphase * StdI->tpp, isite, jsite, dR);
359  StdFace_Coulomb(StdI, StdI->Vpp, isite, jsite);
360  }
361  }/*for (kCell = 0; kCell < StdI->NCell; kCell++)*/
362 
363  fclose(fp);
364  StdFace_PrintXSF(StdI);
365  StdFace_PrintGeometry(StdI);
366 }
void StdFace_PrintVal_i(char *valname, int *val, int val0)
Print a valiable (integer) read from the input file if it is not specified in the input file (=214748...
double V2
Anisotropic Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:78
double complex t2p
Anisotropic hopping (2nd), input parameter.
Definition: StdFace_vals.h:69
double J[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter Jx, Jy, Jz, Jxy, etc.
Definition: StdFace_vals.h:100
void StdFace_GeneralJ(struct StdIntList *StdI, double J[3][3], int Si2, int Sj2, int isite, int jsite)
Treat J as a 3*3 matrix [(6S + 1)*(6S&#39; + 1) interactions].
void StdFace_HubbardLocal(struct StdIntList *StdI, double mu0, double h0, double Gamma0, double U0, int isite)
Add intra-Coulomb, magnetic field, chemical potential for the itenerant electron. ...
double D[3][3]
Coefficient for input parameter D. Only D[2][2] is used.
Definition: StdFace_vals.h:124
double J1p[3][3]
Isotropic, diagonal/off-diagonal spin coupling (2nd Near.), input parameter J1&#39;x, J1&#39;y...
Definition: StdFace_vals.h:113
void StdFace_PrintGeometry(struct StdIntList *StdI)
Print geometry of sites for the pos-process of correlation function.
double J1[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter J1x, J1y, J1z, J1xy, etc. or set in StdFace_InputSpinNN().
Definition: StdFace_vals.h:110
double J2p[3][3]
Isotropic, diagonal/off-diagonal spin coupling (2nd Near.), input parameter J2&#39;x, J2&#39;y...
Definition: StdFace_vals.h:119
void StdFace_Hopping(struct StdIntList *StdI, double complex trans0, int isite, int jsite, double *dR)
Add Hopping for the both spin.
double complex t
Nearest-neighbor hopping, input parameter.
Definition: StdFace_vals.h:62
void StdFace_MallocInteractions(struct StdIntList *StdI, int ntransMax, int nintrMax)
Malloc Arrays for interactions.
double JAll
Isotropic, diagonal spin coupling (1st Near.), input parameter J.
Definition: StdFace_vals.h:82
int S2
Total spin |S| of a local spin, input from file.
Definition: StdFace_vals.h:215
int NsiteUC
Number of sites in the unit cell. Defined in the beginning of each lattice function.
Definition: StdFace_vals.h:53
double J1All
Anisotropic, diagonal spin coupling (1nd Near), input parameter J1.
Definition: StdFace_vals.h:90
void StdFace_InputCoulombV(struct StdIntList *StdI, double *V0, char *V0name)
Input off-site Coulomb interaction from the input file, if it is not specified, use the default value...
void StdFace_InputHopp(struct StdIntList *StdI, double complex *t0, char *t0name)
Input hopping integral from the input file, if it is not specified, use the default value(0 or the is...
double V0p
Anisotropic Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:75
void StdFace_InitSite(struct StdIntList *StdI, FILE *fp, int dim)
Initialize the super-cell where simulation is performed.
double V2p
Anisotropic Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:79
double complex tpp
3rd-nearest hopping, input parameter
Definition: StdFace_vals.h:70
char model[256]
Name of model, input parameter.
Definition: StdFace_vals.h:60
void StdFace_NotUsed_J(char *valname, double JAll, double J[3][3])
Stop HPhi if variables (real) not used is specified in the input file (!=NaN).
double Gamma
Transvars magnetic field, input parameter.
Definition: StdFace_vals.h:127
double JppAll
Isotropic, diagonal spin coupling (3rd Near), input parameter J&#39;&#39;.
Definition: StdFace_vals.h:98
double V1
Anisotropic Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:76
double J0All
Anisotropic, diagonal spin coupling (1nd Near), input parameter J0.
Definition: StdFace_vals.h:86
double J0[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter J0x, J0y, J0z, J0xy, etc. or set in StdFace_InputSpinNN().
Definition: StdFace_vals.h:104
double U
On-site Coulomb potential, input parameter.
Definition: StdFace_vals.h:71
double complex t0p
Anisotropic hopping (2nd), input parameter.
Definition: StdFace_vals.h:65
int ** Cell
[StdIntList][3] The cell position in the fractional coordinate. Malloc and Set in StdFace_InitSite()...
Definition: StdFace_vals.h:51
double phase[3]
Boundary phase, input parameter phase0, etc.
Definition: StdFace_vals.h:133
double J0pAll
Anisotropic, diagonal spin coupling (2nd Near), input parameter J0&#39;.
Definition: StdFace_vals.h:88
double length[3]
Anisotropic lattice constant, input parameter wlength, llength, hlength.
Definition: StdFace_vals.h:37
int * locspinflag
[StdIntList::nsite] LocSpin in Expert mode, malloc and set in each lattice file.
Definition: StdFace_vals.h:141
double complex tp
2nd-nearest hopping, input parameter
Definition: StdFace_vals.h:63
double Jpp[3][3]
Isotropic, diagonal/off-diagonal spin coupling (3rd Near.), input parameter J&#39;&#39;x, J&#39;&#39;y...
Definition: StdFace_vals.h:122
double complex t1
Anisotropic hopping (1st), input parameter.
Definition: StdFace_vals.h:66
double V
Off-site Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:72
double complex t0
Anisotropic hopping (1st), input parameter.
Definition: StdFace_vals.h:64
double direct[3][3]
The unit direct lattice vector. Set in StdFace_InitSite().
Definition: StdFace_vals.h:42
void StdFace_MagField(struct StdIntList *StdI, int S2, double h, double Gamma, int isite)
Add longitudinal and transvars magnetic field to the list.
void StdFace_NotUsed_d(char *valname, double val)
Stop HPhi if a variable (real) not used is specified in the input file (!=NaN).
double V0
Anisotropic Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:74
void StdFace_Coulomb(struct StdIntList *StdI, double V, int isite, int jsite)
Add onsite/offsite Coulomb term to the list StdIntList::Cinter and StdIntList::CinterIndx, and increase the number of them (StdIntList::NCinter).
void StdFace_InputSpin(struct StdIntList *StdI, double Jp[3][3], double JpAll, char *Jpname)
Input spin-spin interaction other than nearest-neighbor.
double Vpp
Off-site Coulomb potential (3rd), input parameter.
Definition: StdFace_vals.h:80
double complex t1p
Anisotropic hopping (2nd), input parameter.
Definition: StdFace_vals.h:67
double complex t2
Anisotropic hopping (1st), input parameter.
Definition: StdFace_vals.h:68
double mu
Chemical potential, input parameter.
Definition: StdFace_vals.h:61
void StdFace_PrintVal_d(char *valname, double *val, double val0)
Print a valiable (real) read from the input file if it is not specified in the input file (=NaN)...
void StdFace_InputSpinNN(struct StdIntList *StdI, double J0[3][3], double J0All, char *J0name)
Input nearest-neighbor spin-spin interaction.
int NCell
The number of the unit cell in the super-cell (determinant of StdIntList::box). Set in StdFace_InitSi...
Definition: StdFace_vals.h:49
double Vp
Off-site Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:73
double J1pAll
Anisotropic, diagonal spin coupling (2nd Near), input parameter J1&#39;.
Definition: StdFace_vals.h:92
void StdFace_NotUsed_c(char *valname, double complex val)
Stop HPhi if a variable (complex) not used is specified in the input file (!=NaN).
void StdFace_PrintVal_c(char *valname, double complex *val, double complex val0)
Print a valiable (complex) read from the input file if it is not specified in the input file (=NaN)...
int nsite
Number of sites, set in the each lattice file.
Definition: StdFace_vals.h:140
double J2All
Anisotropic, diagonal spin coupling (1nd Near), input parameter J2.
Definition: StdFace_vals.h:94
void StdFace_NotUsed_i(char *valname, int val)
Stop HPhi if a variable (integer) not used is specified in the input file (!=2147483647, the upper limt of Int).
void StdFace_PrintXSF(struct StdIntList *StdI)
Print lattice.xsf (XCrysDen format)
double h
Longitudinal magnetic field, input parameter.
Definition: StdFace_vals.h:126
double a
The lattice constant. Input parameter.
Definition: StdFace_vals.h:36
void StdFace_FindSite(struct StdIntList *StdI, int iW, int iL, int iH, int diW, int diL, int diH, int isiteUC, int jsiteUC, int *isite, int *jsite, double complex *Cphase, double *dR)
Find the index of transfer and interaction.
double J2[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter J2x, J2y, J2z, J2xy, etc. or set in StdFace_InputSpinNN().
Definition: StdFace_vals.h:116
double J2pAll
Anisotropic, diagonal spin coupling (2nd Near), input parameter J2&#39;.
Definition: StdFace_vals.h:96
double ** tau
Cell-internal site position in the fractional coordinate. Defined in the beginning of each lattice fu...
Definition: StdFace_vals.h:55
double J0p[3][3]
Isotropic, diagonal/off-diagonal spin coupling (2nd Near.), input parameter J0&#39;x, J0&#39;y...
Definition: StdFace_vals.h:107
double V1p
Anisotropic Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:77
double K
4-spin term. Not used.
Definition: StdFace_vals.h:128