HΦ  3.1.0
ChainLattice.c
Go to the documentation of this file.
1 /*
2 HPhi-mVMC-StdFace - Common input generator
3 Copyright (C) 2015 The University of Tokyo
4 
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
9 
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14 
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
21 #include "StdFace_vals.h"
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <math.h>
25 #include "StdFace_ModelUtil.h"
26 #include <complex.h>
27 #include <string.h>
28 
34  struct StdIntList *StdI
35 )
36 {
37  FILE *fp;
38  int isite, jsite, ntransMax, nintrMax;
39  int iL;
40  double complex Cphase;
41  double dR[3];
42 
46  fp = fopen("lattice.gp", "w");
47 
48  StdI->NsiteUC = 1;
49 
50  fprintf(stdout, " @ Lattice Size & Shape\n\n");
51 
52  StdFace_PrintVal_d("a", &StdI->a, 1.0);
53  StdFace_PrintVal_d("Wlength", &StdI->length[0], StdI->a);
54  StdFace_PrintVal_d("Llength", &StdI->length[1], StdI->a);
55  StdFace_PrintVal_d("Wx", &StdI->direct[0][0], StdI->length[0]);
56  StdFace_PrintVal_d("Wy", &StdI->direct[0][1], 0.0);
57  StdFace_PrintVal_d("Lx", &StdI->direct[1][0], 0.0);
58  StdFace_PrintVal_d("Ly", &StdI->direct[1][1], StdI->length[1]);
59 
60  StdFace_PrintVal_d("phase0", &StdI->phase[0], 0.0);
61  StdFace_NotUsed_d("phase1", StdI->phase[1]);
62  StdI->phase[1] = StdI->phase[0];
63  StdI->phase[0] = 0.0;
64 
65  StdFace_RequiredVal_i("L", StdI->L);
66  StdFace_NotUsed_i("W", StdI->W);
67  StdI->W = 1;
68  StdFace_InitSite(StdI, fp, 2);
69  StdI->tau[0][0] = 0.0; StdI->tau[0][1] = 0.0; StdI->tau[0][2] = 0.0;
73  fprintf(stdout, "\n @ Hamiltonian \n\n");
74  StdFace_NotUsed_J("J1", StdI->J1All, StdI->J1);
75  StdFace_NotUsed_J("J2", StdI->J2All, StdI->J2);
76  StdFace_NotUsed_J("J1'", StdI->J1pAll, StdI->J1p);
77  StdFace_NotUsed_J("J2'", StdI->J2pAll, StdI->J2p);
78  StdFace_NotUsed_c("t1", StdI->t1);
79  StdFace_NotUsed_c("t2", StdI->t2);
80  StdFace_NotUsed_d("t1'", StdI->t1p);
81  StdFace_NotUsed_d("t2'", StdI->t2p);
82  StdFace_NotUsed_d("V1", StdI->V1);
83  StdFace_NotUsed_d("V2", StdI->V2);
84  StdFace_NotUsed_d("V1'", StdI->V1p);
85  StdFace_NotUsed_d("V2'", StdI->V2p);
86  StdFace_NotUsed_d("K", StdI->K);
87  StdFace_PrintVal_d("h", &StdI->h, 0.0);
88  StdFace_PrintVal_d("Gamma", &StdI->Gamma, 0.0);
89 
90  if (strcmp(StdI->model, "spin") == 0 ) {
91  StdFace_PrintVal_i("2S", &StdI->S2, 1);
92  StdFace_PrintVal_d("D", &StdI->D[2][2], 0.0);
93  StdFace_InputSpinNN(StdI, StdI->J0, StdI->J0All, "J0");
94  StdFace_InputSpin(StdI, StdI->Jp, StdI->JpAll, "J'");
95 
96  StdFace_NotUsed_d("mu", StdI->mu);
97  StdFace_NotUsed_d("U", StdI->U);
98  StdFace_NotUsed_c("t", StdI->t);
99  StdFace_NotUsed_c("t0", StdI->t0);
100  StdFace_NotUsed_c("t'", StdI->tp);
101  StdFace_NotUsed_d("V", StdI->V);
102  StdFace_NotUsed_d("V0", StdI->V0);
103  StdFace_NotUsed_d("V'", StdI->Vp);
104  }/*if (strcmp(StdI->model, "spin") == 0 )*/
105  else {
106  StdFace_PrintVal_d("mu", &StdI->mu, 0.0);
107  StdFace_PrintVal_d("U", &StdI->U, 0.0);
108  StdFace_InputHopp(StdI, &StdI->t0, "t0");
109  StdFace_PrintVal_c("t'", &StdI->tp, 0.0);
110  StdFace_InputCoulombV(StdI, &StdI->V0, "V0");
111  StdFace_PrintVal_d("V'", &StdI->Vp, 0.0);
112 
113  StdFace_NotUsed_J("J0", StdI->J0All, StdI->J0);
114  StdFace_NotUsed_J("J'", StdI->JpAll, StdI->Jp);
115  StdFace_NotUsed_d("D", StdI->D[2][2]);
116 
117  if (strcmp(StdI->model, "hubbard") == 0 ) {
118  StdFace_NotUsed_i("2S", StdI->S2);
119  StdFace_NotUsed_J("J", StdI->JAll, StdI->J);
120  }
121  else if (strcmp(StdI->model, "kondo") == 0 ) {
122  StdFace_PrintVal_i("2S", &StdI->S2, 1);
123  StdFace_InputSpin(StdI, StdI->J, StdI->JAll, "J");
124  }
125  }/*if (strcmp(StdI->model, "spin") != 0 )*/
126  fprintf(stdout, "\n @ Numerical conditions\n\n");
131  StdI->nsite = StdI->L;
132  if (strcmp(StdI->model, "kondo") == 0 ) StdI->nsite *= 2;
133  StdI->locspinflag = (int *)malloc(sizeof(int) * StdI->nsite);
134 
135  if (strcmp(StdI->model, "spin") == 0 )
136  for (isite = 0; isite < StdI->nsite; isite++)StdI->locspinflag[isite] = StdI->S2;
137  else if (strcmp(StdI->model, "hubbard") == 0 )
138  for (isite = 0; isite < StdI->nsite; isite++)StdI->locspinflag[isite] = 0;
139  else if (strcmp(StdI->model, "kondo") == 0 )
140  for (isite = 0; isite < StdI->nsite / 2; isite++) {
141  StdI->locspinflag[isite] = StdI->S2;
142  StdI->locspinflag[isite + StdI->nsite / 2] = 0;
143  }
147  if (strcmp(StdI->model, "spin") == 0 ) {
148  ntransMax = StdI->L * (StdI->S2 + 1/*h*/ + 2 * StdI->S2/*Gamma*/);
149  nintrMax = StdI->L * (StdI->NsiteUC/*D*/ + 1/*J*/ + 1/*J'*/)
150  * (3 * StdI->S2 + 1) * (3 * StdI->S2 + 1);
151  }
152  else {
153  ntransMax = StdI->L * 2/*spin*/ * (2 * StdI->NsiteUC/*mu+h+Gamma*/ + 2/*t*/ + 2/*t'*/);
154  nintrMax = StdI->L * (StdI->NsiteUC/*U*/ + 4 * (1/*V*/ + 1/*V'*/));
155 
156  if (strcmp(StdI->model, "kondo") == 0) {
157  ntransMax += StdI->L * (StdI->S2 + 1/*h*/ + 2 * StdI->S2/*Gamma*/);
158  nintrMax += StdI->nsite / 2 * (3 * 1 + 1) * (3 * StdI->S2 + 1);
159  }/*if (strcmp(StdI->model, "kondo") == 0)*/
160  }
161 
162  StdFace_MallocInteractions(StdI, ntransMax, nintrMax);
166  for (iL = 0; iL < StdI->L; iL++){
167 
168  isite = iL;
169  if (strcmp(StdI->model, "kondo") == 0 ) isite += StdI->L;
170  /*
171  Local term
172  */
173  if (strcmp(StdI->model, "spin") == 0 ) {
174  StdFace_MagField(StdI, StdI->S2, -StdI->h, -StdI->Gamma, isite);
175  StdFace_GeneralJ(StdI, StdI->D, StdI->S2, StdI->S2, isite, isite);
176  }/*if (strcmp(StdI->model, "spin") == 0 )*/
177  else {
178  StdFace_HubbardLocal(StdI, StdI->mu, -StdI->h, -StdI->Gamma, StdI->U, isite);
179  if (strcmp(StdI->model, "kondo") == 0 ) {
180  jsite = iL;
181  StdFace_GeneralJ(StdI, StdI->J, 1, StdI->S2, isite, jsite);
182  StdFace_MagField(StdI, StdI->S2, -StdI->h, -StdI->Gamma, jsite);
183  }/*if (strcmp(StdI->model, "kondo") == 0 )*/
184  }/*if (model != "spin")*/
185  /*
186  Nearest neighbor
187  */
188  StdFace_SetLabel(StdI, fp, 0, iL, 0, 1, 0, 0, &isite, &jsite, 1, &Cphase, dR);
189 
190  if (strcmp(StdI->model, "spin") == 0 ) {
191  StdFace_GeneralJ(StdI, StdI->J0, StdI->S2, StdI->S2, isite, jsite);
192  }
193  else {
194  StdFace_Hopping(StdI, Cphase * StdI->t0, isite, jsite, dR);
195  StdFace_Coulomb(StdI, StdI->V0, isite, jsite);
196  }
197  /*
198  Second nearest neighbor
199  */
200  StdFace_SetLabel(StdI, fp, 0, iL, 0, 2, 0, 0, &isite, &jsite, 2, &Cphase, dR);
201 
202  if (strcmp(StdI->model, "spin") == 0 ) {
203  StdFace_GeneralJ(StdI, StdI->Jp, StdI->S2, StdI->S2, isite, jsite);
204  }
205  else {
206  StdFace_Hopping(StdI, Cphase * StdI->tp, isite, jsite, dR);
207  StdFace_Coulomb(StdI, StdI->Vp, isite, jsite);
208  }
209  }/*for (iL = 0; iL < StdI->L; iL++)*/
210 
211  fprintf(fp, "plot \'-\' w d lc 7\n0.0 0.0\nend\npause -1\n");
212  fclose(fp);
213  StdFace_PrintGeometry(StdI);
214 }/*void StdFace_Chain*/
215 
216 #if defined(_HPhi)
217 
221 void StdFace_Chain_Boost(struct StdIntList *StdI)
222 {
223  int isite, ipivot;
224  int kintr;
225  FILE *fp;
226 
227  StdI->NsiteUC = 1;
228  /*
229  Magnetic field
230  */
231  fp = fopen("boost.def", "w");
232  fprintf(fp, "# Magnetic field\n");
233  fprintf(fp, "%25.15e %25.15e %25.15e\n",
234  -0.5 * StdI->Gamma, 0.0, -0.5 *StdI->h);
235  /*
236  Interaction
237  */
238  fprintf(fp, "%d # Number of type of J\n", 2);
239  fprintf(fp, "# J 1\n");
240  fprintf(fp, "%25.15e %25.15e %25.15e\n",
241  0.25 * StdI->J0[0][0], 0.25 * StdI->J0[0][1], 0.25 * StdI->J0[0][2]);
242  fprintf(fp, "%25.15e %25.15e %25.15e\n",
243  0.25 * StdI->J0[1][0], 0.25 * StdI->J0[1][1], 0.25 * StdI->J0[1][2]);
244  fprintf(fp, "%25.15e %25.15e %25.15e\n",
245  0.25 * StdI->J0[2][0], 0.25 * StdI->J0[2][1], 0.25 * StdI->J0[2][2]);
246  fprintf(fp, "# J 2\n");
247  fprintf(fp, "%25.15e %25.15e %25.15e\n",
248  0.25 * StdI->Jp[0][0], 0.25 * StdI->Jp[0][1], 0.25 * StdI->Jp[0][2]);
249  fprintf(fp, "%25.15e %25.15e %25.15e\n",
250  0.25 * StdI->Jp[1][0], 0.25 * StdI->Jp[1][1], 0.25 * StdI->Jp[1][2]);
251  fprintf(fp, "%25.15e %25.15e %25.15e\n",
252  0.25 * StdI->Jp[2][0], 0.25 * StdI->Jp[2][1], 0.25 * StdI->Jp[2][2]);
253  /*
254  Topology
255  */
256  if (StdI->S2 != 1) {
257  fprintf(stdout, "\n ERROR! S2 must be 1 in Boost. \n\n");
258  StdFace_exit(-1);
259  }
260  StdI->ishift_nspin = 4;
261  if(StdI->L % 8 != 0){
262  fprintf(stdout, "\n ERROR! L %% 8 != 0 \n\n");
263  StdFace_exit(-1);
264  }
265  StdI->W = StdI->L / 2;
266  StdI->L = 2;
267  StdI->num_pivot = StdI->W / 4;
268 
269  fprintf(fp, "# W0 R0 StdI->num_pivot StdI->ishift_nspin\n");
270  fprintf(fp, "%d %d %d %d\n", StdI->W, StdI->L, StdI->num_pivot, StdI->ishift_nspin);
271 
272  StdI->list_6spin_star = (int **)malloc(sizeof(int*) * StdI->num_pivot);
273  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
274  StdI->list_6spin_star[ipivot] = (int *)malloc(sizeof(int) * 7);
275  }
276 
277  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
278  StdI->list_6spin_star[ipivot][0] = 8; // num of J
279  StdI->list_6spin_star[ipivot][1] = 1;
280  StdI->list_6spin_star[ipivot][2] = 1;
281  StdI->list_6spin_star[ipivot][3] = 1;
282  StdI->list_6spin_star[ipivot][4] = 1;
283  StdI->list_6spin_star[ipivot][5] = 1;
284  StdI->list_6spin_star[ipivot][6] = 1; // flag
285  }
286 
287  fprintf(fp, "# StdI->list_6spin_star\n");
288  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
289  fprintf(fp, "# pivot %d\n", ipivot);
290  for (isite = 0; isite < 7; isite++) {
291  fprintf(fp, "%d ", StdI->list_6spin_star[ipivot][isite]);
292  }
293  fprintf(fp, "\n");
294  }
295 
296  StdI->list_6spin_pair = (int ***)malloc(sizeof(int**) * StdI->num_pivot);
297  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
298  StdI->list_6spin_pair[ipivot] = (int **)malloc(sizeof(int*) * 7);
299  for (isite = 0; isite < 7; isite++) {
300  StdI->list_6spin_pair[ipivot][isite] = (int *)malloc(sizeof(int) * StdI->list_6spin_star[ipivot][0]);
301  }
302  }
303 
304  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
305  StdI->list_6spin_pair[ipivot][0][0] = 0;
306  StdI->list_6spin_pair[ipivot][1][0] = 1;
307  StdI->list_6spin_pair[ipivot][2][0] = 2;
308  StdI->list_6spin_pair[ipivot][3][0] = 3;
309  StdI->list_6spin_pair[ipivot][4][0] = 4;
310  StdI->list_6spin_pair[ipivot][5][0] = 5;
311  StdI->list_6spin_pair[ipivot][6][0] = 1; // type of J
312  StdI->list_6spin_pair[ipivot][0][1] = 1;
313  StdI->list_6spin_pair[ipivot][1][1] = 2;
314  StdI->list_6spin_pair[ipivot][2][1] = 0;
315  StdI->list_6spin_pair[ipivot][3][1] = 3;
316  StdI->list_6spin_pair[ipivot][4][1] = 4;
317  StdI->list_6spin_pair[ipivot][5][1] = 5;
318  StdI->list_6spin_pair[ipivot][6][1] = 1; // type of J
319  StdI->list_6spin_pair[ipivot][0][2] = 2;
320  StdI->list_6spin_pair[ipivot][1][2] = 3;
321  StdI->list_6spin_pair[ipivot][2][2] = 0;
322  StdI->list_6spin_pair[ipivot][3][2] = 1;
323  StdI->list_6spin_pair[ipivot][4][2] = 4;
324  StdI->list_6spin_pair[ipivot][5][2] = 5;
325  StdI->list_6spin_pair[ipivot][6][2] = 1; // type of J
326  StdI->list_6spin_pair[ipivot][0][3] = 3;
327  StdI->list_6spin_pair[ipivot][1][3] = 4;
328  StdI->list_6spin_pair[ipivot][2][3] = 0;
329  StdI->list_6spin_pair[ipivot][3][3] = 1;
330  StdI->list_6spin_pair[ipivot][4][3] = 2;
331  StdI->list_6spin_pair[ipivot][5][3] = 5;
332  StdI->list_6spin_pair[ipivot][6][3] = 1; // type of J
333  StdI->list_6spin_pair[ipivot][0][4] = 0;
334  StdI->list_6spin_pair[ipivot][1][4] = 2;
335  StdI->list_6spin_pair[ipivot][2][4] = 1;
336  StdI->list_6spin_pair[ipivot][3][4] = 3;
337  StdI->list_6spin_pair[ipivot][4][4] = 4;
338  StdI->list_6spin_pair[ipivot][5][4] = 5;
339  StdI->list_6spin_pair[ipivot][6][4] = 2; // type of J
340  StdI->list_6spin_pair[ipivot][0][5] = 1;
341  StdI->list_6spin_pair[ipivot][1][5] = 3;
342  StdI->list_6spin_pair[ipivot][2][5] = 0;
343  StdI->list_6spin_pair[ipivot][3][5] = 2;
344  StdI->list_6spin_pair[ipivot][4][5] = 4;
345  StdI->list_6spin_pair[ipivot][5][5] = 5;
346  StdI->list_6spin_pair[ipivot][6][5] = 2; // type of J
347  StdI->list_6spin_pair[ipivot][0][6] = 2;
348  StdI->list_6spin_pair[ipivot][1][6] = 4;
349  StdI->list_6spin_pair[ipivot][2][6] = 0;
350  StdI->list_6spin_pair[ipivot][3][6] = 1;
351  StdI->list_6spin_pair[ipivot][4][6] = 3;
352  StdI->list_6spin_pair[ipivot][5][6] = 5;
353  StdI->list_6spin_pair[ipivot][6][6] = 2; // type of J
354  StdI->list_6spin_pair[ipivot][0][7] = 3;
355  StdI->list_6spin_pair[ipivot][1][7] = 5;
356  StdI->list_6spin_pair[ipivot][2][7] = 0;
357  StdI->list_6spin_pair[ipivot][3][7] = 1;
358  StdI->list_6spin_pair[ipivot][4][7] = 2;
359  StdI->list_6spin_pair[ipivot][5][7] = 4;
360  StdI->list_6spin_pair[ipivot][6][7] = 2; // type of J
361  }
362 
363  fprintf(fp, "# StdI->list_6spin_pair\n");
364  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
365  fprintf(fp, "# pivot %d\n", ipivot);
366  for (kintr = 0; kintr < StdI->list_6spin_star[ipivot][0]; kintr++) {
367  for (isite = 0; isite < 7; isite++) {
368  fprintf(fp, "%d ", StdI->list_6spin_pair[ipivot][isite][kintr]);
369  }
370  fprintf(fp, "\n");
371  }
372  }
373  fclose(fp);
374 
375  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
376  free(StdI->list_6spin_star[ipivot]);
377  }
378  free(StdI->list_6spin_star);
379 
380  for (ipivot = 0; ipivot < StdI->num_pivot; ipivot++) {
381  for (isite = 0; isite < 7; isite++) {
382  free(StdI->list_6spin_pair[ipivot][isite]);
383  }
384  free(StdI->list_6spin_pair[ipivot]);
385  }
386  free(StdI->list_6spin_pair);
387 
388 }
389 #endif
void StdFace_PrintVal_i(char *valname, int *val, int val0)
Print a valiable (integer) read from the input file if it is not specified in the input file (=214748...
double V2
Anisotropic Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:78
double Jp[3][3]
Isotropic, diagonal/off-diagonal spin coupling (2nd Near.), input parameter J&#39;x, J&#39;y, J&#39;z, J&#39;xy, etc.
Definition: StdFace_vals.h:102
double complex t2p
Anisotropic hopping (2nd), input parameter.
Definition: StdFace_vals.h:69
double J[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter Jx, Jy, Jz, Jxy, etc.
Definition: StdFace_vals.h:100
void StdFace_GeneralJ(struct StdIntList *StdI, double J[3][3], int Si2, int Sj2, int isite, int jsite)
Treat J as a 3*3 matrix [(6S + 1)*(6S&#39; + 1) interactions].
int L
Number of sites along the 2nd axis, input parameter.
Definition: StdFace_vals.h:40
void StdFace_HubbardLocal(struct StdIntList *StdI, double mu0, double h0, double Gamma0, double U0, int isite)
Add intra-Coulomb, magnetic field, chemical potential for the itenerant electron. ...
double D[3][3]
Coefficient for input parameter D. Only D[2][2] is used.
Definition: StdFace_vals.h:124
double J1p[3][3]
Isotropic, diagonal/off-diagonal spin coupling (2nd Near.), input parameter J1&#39;x, J1&#39;y...
Definition: StdFace_vals.h:113
void StdFace_PrintGeometry(struct StdIntList *StdI)
Print geometry of sites for the pos-process of correlation function.
double JpAll
Isotropic, diagonal spin coupling (2nd Near), input parameter Jp.
Definition: StdFace_vals.h:84
void StdFace_Chain(struct StdIntList *StdI)
Setup a Hamiltonian for the Hubbard model on a Chain lattice.
Definition: ChainLattice.c:33
double J1[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter J1x, J1y, J1z, J1xy, etc. or set in StdFace_InputSpinNN().
Definition: StdFace_vals.h:110
double J2p[3][3]
Isotropic, diagonal/off-diagonal spin coupling (2nd Near.), input parameter J2&#39;x, J2&#39;y...
Definition: StdFace_vals.h:119
int ** list_6spin_star
Definition: StdFace_vals.h:251
void StdFace_Hopping(struct StdIntList *StdI, double complex trans0, int isite, int jsite, double *dR)
Add Hopping for the both spin.
double complex t
Nearest-neighbor hopping, input parameter.
Definition: StdFace_vals.h:62
void StdFace_MallocInteractions(struct StdIntList *StdI, int ntransMax, int nintrMax)
Malloc Arrays for interactions.
double JAll
Isotropic, diagonal spin coupling (1st Near.), input parameter J.
Definition: StdFace_vals.h:82
int S2
Total spin |S| of a local spin, input from file.
Definition: StdFace_vals.h:215
int NsiteUC
Number of sites in the unit cell. Defined in the beginning of each lattice function.
Definition: StdFace_vals.h:53
double J1All
Anisotropic, diagonal spin coupling (1nd Near), input parameter J1.
Definition: StdFace_vals.h:90
void StdFace_Chain_Boost(struct StdIntList *StdI)
Setup a Hamiltonian for the generalized Heisenberg model on a Chain lattice.
Definition: ChainLattice.c:221
void StdFace_InputCoulombV(struct StdIntList *StdI, double *V0, char *V0name)
Input off-site Coulomb interaction from the input file, if it is not specified, use the default value...
void StdFace_InputHopp(struct StdIntList *StdI, double complex *t0, char *t0name)
Input hopping integral from the input file, if it is not specified, use the default value(0 or the is...
void StdFace_InitSite(struct StdIntList *StdI, FILE *fp, int dim)
Initialize the super-cell where simulation is performed.
int W
Number of sites along the 1st axis, input parameter.
Definition: StdFace_vals.h:39
double V2p
Anisotropic Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:79
char model[256]
Name of model, input parameter.
Definition: StdFace_vals.h:60
void StdFace_NotUsed_J(char *valname, double JAll, double J[3][3])
Stop HPhi if variables (real) not used is specified in the input file (!=NaN).
double Gamma
Transvars magnetic field, input parameter.
Definition: StdFace_vals.h:127
double J0All
Anisotropic, diagonal spin coupling (1nd Near), input parameter J0.
Definition: StdFace_vals.h:86
double V1
Anisotropic Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:76
double J0[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter J0x, J0y, J0z, J0xy, etc. or set in StdFace_InputSpinNN().
Definition: StdFace_vals.h:104
double U
On-site Coulomb potential, input parameter.
Definition: StdFace_vals.h:71
double phase[3]
Boundary phase, input parameter phase0, etc.
Definition: StdFace_vals.h:133
int ishift_nspin
Definition: StdFace_vals.h:253
double length[3]
Anisotropic lattice constant, input parameter wlength, llength, hlength.
Definition: StdFace_vals.h:37
int * locspinflag
[StdIntList::nsite] LocSpin in Expert mode, malloc and set in each lattice file.
Definition: StdFace_vals.h:141
double complex tp
2nd-nearest hopping, input parameter
Definition: StdFace_vals.h:63
double complex t1
Anisotropic hopping (1st), input parameter.
Definition: StdFace_vals.h:66
double V
Off-site Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:72
double complex t0
Anisotropic hopping (1st), input parameter.
Definition: StdFace_vals.h:64
double direct[3][3]
The unit direct lattice vector. Set in StdFace_InitSite().
Definition: StdFace_vals.h:42
void StdFace_MagField(struct StdIntList *StdI, int S2, double h, double Gamma, int isite)
Add longitudinal and transvars magnetic field to the list.
void StdFace_NotUsed_d(char *valname, double val)
Stop HPhi if a variable (real) not used is specified in the input file (!=NaN).
double V0
Anisotropic Coulomb potential (1st), input parameter.
Definition: StdFace_vals.h:74
void StdFace_Coulomb(struct StdIntList *StdI, double V, int isite, int jsite)
Add onsite/offsite Coulomb term to the list StdIntList::Cinter and StdIntList::CinterIndx, and increase the number of them (StdIntList::NCinter).
void StdFace_InputSpin(struct StdIntList *StdI, double Jp[3][3], double JpAll, char *Jpname)
Input spin-spin interaction other than nearest-neighbor.
void StdFace_SetLabel(struct StdIntList *StdI, FILE *fp, int iW, int iL, int diW, int diL, int isiteUC, int jsiteUC, int *isite, int *jsite, int connect, double complex *Cphase, double *dR)
Set Label in the gnuplot display (Only used in 2D system)
double complex t1p
Anisotropic hopping (2nd), input parameter.
Definition: StdFace_vals.h:67
double complex t2
Anisotropic hopping (1st), input parameter.
Definition: StdFace_vals.h:68
double mu
Chemical potential, input parameter.
Definition: StdFace_vals.h:61
void StdFace_PrintVal_d(char *valname, double *val, double val0)
Print a valiable (real) read from the input file if it is not specified in the input file (=NaN)...
void StdFace_InputSpinNN(struct StdIntList *StdI, double J0[3][3], double J0All, char *J0name)
Input nearest-neighbor spin-spin interaction.
double Vp
Off-site Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:73
double J1pAll
Anisotropic, diagonal spin coupling (2nd Near), input parameter J1&#39;.
Definition: StdFace_vals.h:92
void StdFace_RequiredVal_i(char *valname, int val)
Stop HPhi if a variable (integer) which must be specified is absent in the input file (=2147483647...
int *** list_6spin_pair
Definition: StdFace_vals.h:250
void StdFace_NotUsed_c(char *valname, double complex val)
Stop HPhi if a variable (complex) not used is specified in the input file (!=NaN).
void StdFace_PrintVal_c(char *valname, double complex *val, double complex val0)
Print a valiable (complex) read from the input file if it is not specified in the input file (=NaN)...
int nsite
Number of sites, set in the each lattice file.
Definition: StdFace_vals.h:140
double J2All
Anisotropic, diagonal spin coupling (1nd Near), input parameter J2.
Definition: StdFace_vals.h:94
Variables used in the Standard mode. These variables are passed as a pointer of the structure(StdIntL...
void StdFace_NotUsed_i(char *valname, int val)
Stop HPhi if a variable (integer) not used is specified in the input file (!=2147483647, the upper limt of Int).
double h
Longitudinal magnetic field, input parameter.
Definition: StdFace_vals.h:126
double a
The lattice constant. Input parameter.
Definition: StdFace_vals.h:36
double J2[3][3]
Isotropic, diagonal/off-diagonal spin coupling (1st Near.), input parameter J2x, J2y, J2z, J2xy, etc. or set in StdFace_InputSpinNN().
Definition: StdFace_vals.h:116
double J2pAll
Anisotropic, diagonal spin coupling (2nd Near), input parameter J2&#39;.
Definition: StdFace_vals.h:96
double ** tau
Cell-internal site position in the fractional coordinate. Defined in the beginning of each lattice fu...
Definition: StdFace_vals.h:55
void StdFace_exit(int errorcode)
MPI Abortation wrapper.
double V1p
Anisotropic Coulomb potential (2nd), input parameter.
Definition: StdFace_vals.h:77
double K
4-spin term. Not used.
Definition: StdFace_vals.h:128