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(CTM) renormalization group method,29,30 for arbitrary
unit cell sizes20,32 which is summarized in the following.

Consider the problem of computing the norm of an
iPEPS h | i, which boils down to contracting the in-
finite 2D square lattice network of the reduced tensors
a[x,y], shown in Fig. 1(c), where each a[x,y] is obtained
from contracting A[x,y] with its conjugate tensor A†[x,y],
see Fig. 1(b). The goal of the CTM approach is to com-
pute the four corner tensors C1, C2, C3, C4, and the four
edge tensors T1, T2, T3, T4 for each coordinate [x, y] in
the unit cell, where each corner tensor represents a quad-
rant and the edge tensors a half-row (or half-column) of
the infinite 2D network. All these tensors together form
the so-called environment, representing the infinite sys-
tem surrounding a bulk site (or several bulk sites), as
shown in Fig. 1(c). Once the environment has been com-
puted, one can easily evaluate expectation values of local
observables by introducing the corresponding operators
in between the physical legs of the iPEPS tensors.

The environment tensors are computed iteratively by
letting the system grow in all directions. One starts from
an initial guess for the boundary tensors, either by initial-
izing them randomly, or alternatively one can initialize
them with the bulk tensors (by tracing out the auxiliary
bonds on the edges). In the directional CTM approach30

one first performs a growth step on e.g. the left side of
the system (called a left move), by introducing a new col-
umn of tensors, multiplying them onto the left boundary
tensors, followed by a renormalization step, see Fig. 1(d).

In the renormalization step a bond dimension � is kept
at the boundary which controls the accuracy of the ap-
proximate contraction. There are di↵erent ways how to
perform this renormalization step. Here we use a set of
projectors P and P̃ , introduced in Refs. 33 and 34 and
first applied in the CTM method in Ref. 20, to project
from the enlarged space �D2 down to a dimension �.
These projectors are then used to compute the renormal-
ized corner- and edge tensors, C 0

1, C
0
4, and T 0

4, as shown
in Fig. 1(e).

For a unit cell of size Lx ⇥ Ly one proceeds in the
following way for a full left move (i.e. an absorption of
the entire unit cell into the left boundary):

• Do for all x 2 [1, Lx]

– Do for all y 2 [1, Ly]

⇤ Compute the projectors P [x�1,y] and
P̃ [x�1,y] (see Ref. 20 for details)

– Do for all y 2 [1, Ly]

⇤ Compute the new renormalized corner

tensors C 0[x,y]
1 , C 0[x,y]

4 , and edge tensor

T 0[x,y]
4 , as shown in Fig. 1(e)

After a full left move one proceeds with a full right-,
top-, bottom-move in a similar way, and reiterates until
convergence is reached (e.g. by checking the convergence
of the energy with CTM iterations).

C. Optimization based on imaginary time evolution

In order to get an approximate representation of the
ground state of a given Hamiltonian Ĥ, the tensors need
to be optimized, i.e. one needs to find the best variational
parameters stored in the tensors. In previous iPEPS sim-
ulations this has been done based on an imaginary time
evolution (ITE) of an initial (e.g. random) state. Using a
Trotter-Suzuki decomposition the imaginary time evolu-
tion operator is split into a product of two-site operators,

e��Ĥ = e��
P

b Ĥb ⇡
 
Y

b

Ûb

!n

, Ûb = e�⌧Ĥb , (1)

where the product goes over all nearest-neighbor bonds b
in the unit cell (assuming a Hamiltonian with only
nearest-neighbor terms), Ĥb is the Hamiltonian term on
bond b, and ⌧ = �/n is a small imaginary time step. The
error of the Trotter-Suzuki decomposition decreases with
the size of the time-step ⌧ .35 The ITE is then performed
by sequentially multiplying the two-site operators Ûb to
the iPEPS and representing the resulting wave function
again as an iPEPS with the same bond dimension, until
convergence is reached. There exist di↵erent schemes to
truncate of a bond. In the so-called simple update scheme
the truncation is done based on a local singular value
decomposition,26,27,36 whereas in the full-update10,27 (or
fast-full update28) the entire 2D wave function is taken
into account for the truncation of a bond index. The sim-
ple update is computationally cheaper, but less accurate
than the full update.

III. VARIATIONAL OPTIMIZATION

A. Basic idea

Variational optimization schemes are commonly used
in MPS based algorithms,1,3 and have already been ap-
plied to finite PEPS,2,5,6 but not yet to iPEPS. The main
idea is to iteratively optimize one tensor after the other
until convergence is reached. Optimizing a single ten-
sor A (while keeping all other tensors fixed) boils down
to minimizing the energy with respect to tensor A,

min
A

E(A) = min
A

h (A)|Ĥ| (A)i
h (A)| (A)i = min

~A

~A†
H ~A

~A†N ~A
(2)

where the tensor A and its conjugate have been reshaped
into vectors. The matrices N and H correspond to the
(reshaped) tensor network representing the norm and the
expectation value of Ĥ excluding the tensor A and its
conjugate A†, respectively, see Fig. 2. Minimizing with
respect to A† yields a generalized eigenvalue problem,

@

@ ~A†

 
~A†
H ~A

~A†N ~A

!
= 0, ! H ~A = EN ~A. (3)

L. Vanderstraeten et al , Phys. Rev. B 94, 155123 (2016).
P. Corboz, Phys. Rev. B 94, 035133 (2016).

H.-J. Liao et al, Phys. Rev. X 9, 31041 (2019).
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Quantum many-body systems accommodate various exotic
states and phenomena. One of the most notable examples
is Bose–Einstein condensation (BEC), where a macro-

scopic number of bosonic particles occupy a single particle state
as in a superfluid state of liquid 4He and in cold atomic gases.
With the aid of attractive force, fermions in pairs can also
condensate as in a superconducting state of electrons. In most
antiferromagnetic insulators, the elementary excitation is a
bosonic excitation magnon, and this can form a BEC1–3. Inter-
estingly, interactions between magnons and couplings with the
basal crystalline lattice lead to rich physics in quantum anti-
ferromagnets, thereby distinguishing it from the canonical BEC.

The magnon picture has proven extremely fruitful for several
antiferromagnets composed of spin-1/2 pairs with a spin-singlet
(S= 0) ground-state, and triplet (S= 1) excitations called tri-
plons. The triplons are similar to conventional magnons excited
in an ordered antiferromagnet because both carry the spin
angular momentum of ħ, and thus the two terms are occasionally
used interchangeably2,3. At a critical applied magnetic field, the
energy of one of the Zeeman-split triplet components intersects
the ground-state singlet, thereby resulting in a long-range mag-
netic order. Specifically, the transition corresponds to a BEC of
diluted triplons (magnons), and this is typically observed in
TlCuCl34,5. Above the critical field, the magnetization starts to
increase linearly when the density of magnons increases with
magnetic field. The magnetic field acts as a chemical potential for
magnons, and thus controls the density of the magnons (which is
proportional to the magnetization).

In simple spin systems, the magnetization increases smoothly
with the magnetic field and eventually saturates. However, in
certain quantum magnets, flat regions termed as magnetization
plateaus appear at fractional magnetizations before saturation.
There are two types of magnetization plateaus: a classical one
that is described by a collinear arrangement of classical spins
and a quantum state comprising entangled spins6. Classical
magnetization plateaus are observed in triangular magnets,
such as Cs2CuBr47 and Ba3CoSb2O9

8,9, and the quantum pla-
teaus in dimer magnets such as NH4CuCl310 and
SrCu2(BO3)211.

A transition to a quantum plateau as a function of magnetic
field is considered to be a superfluid-insulator transition of hard-
core bosons (magnons). Interacting magnons in a BEC state tend
to localize due to the suppression of kinetic energy and eventually
crystallize to become “insulating” such as Mott insulators in
strongly correlated electron systems12. The magnon crystal
exhibits a fixed density of magnons, and thus the magnetization
remains at a fractional value of the full magnetization in a field
range6. The fractional value of magnetization is attributed to the
commensurability of the magnon crystal when there is no topo-
logical order. The number of magnons, QmagS(1 – m), in the
magnetic unit cell should be an integer where Qmag, S, m denote
the number of spins in the magnetic unit cell, the spin quantum
number, and the magnetization divided by the saturation mag-
netization, respectively13. In SrCu2(BO3)2, which comprises pairs
of Cu2+ ions arranged orthogonally to each other in the sheet to
form a Shastry–Sutherland lattice11, a series of magnetization
plateaus appear at m= 1/8, 1/4, 1/3 (Qmag= 16, 8, 12)14,15; and
nuclear magnetic resonance measurements directly confirmed
spontaneous translational symmetry breaking in the magnon
crystals16.

In the spin-1/2 kagomé antiferromagnet (KAFM)17–19, the
ground-state is a gapless or gapful spin liquid and the formation
of nontrivial magnons is theoretically expected immediately
below the saturation20. When the magnetic field is set to infini-
tesimally smaller than the saturation field Bs, a magnon with total
Sz= 2 in a hexagonal plaquette is generated in the fully polarized

spin state, which is the vacuum of magnons as schematically
depicted in Fig. 1. Each spin inside the hexagonal plaquette
equally carries fractional magnetization, and thus, the ‘hexagonal
magnon’’ corresponds to a highly quantum mechanical entity.
Given the absence of energy cost for magnon generation, the
density rapidly increases to 1/9 before the magnons overlap with
each other to feel mutual repulsion. This results in an decrease in
the magnetization from 1 to 7/9 at Bs20. Subsequently, a crys-
talline phase with a superstructure of the

ffiffiffi
3

p
×

ffiffiffi
3

p
unit cell with

Qmag= 9 is formed in a range of fields, thereby yielding a 7/9
magnetization plateau. A large magnon is emergently generated
on a hexagon of the kagomé lattice in the KAFM, which is sig-
nificantly different from dimer magnets with singlet and triplet
states that naturally occur on built-in pairs of Cu ions.

Here, we report the observation of a series of fractional mag-
netization plateaus in the kagomé antiferromagnet Cd-kapellasite
(CdK) and demonstrate the presence of emergent hexagonal
magnons in the kagomé lattice. Some of the observed magneti-
zation plateaus are reproduced by theoretical calculations for the
simple KAFM model, while the others may be stabilized by lattice
commensurability, additional long-range interactions, and
potentially coupling to lattice.

Results
Theoretical predictions for multiple plateaus. Recent calcula-
tions by the density-matrix-renormalization-group method, the
exact diagonalization, and the tensor network method show that
in addition to the well-established 7/9 plateau, three plateaus
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Fig. 1 Calculated magnetization process for the spin-1/2 KAFM with the
nearest-neighbor interaction J. The tensor network method with the
projected entangled pair state (PEPS) is used. The vertical and horizontal
axes represent magnetizationM divided by saturated magnetizationMs and
magnetic field B divided by J, respectively. The top left inset shows a
schematic drawing of hexagonal magnons that are depicted by doughnuts
containing six entangled spins. The other intervening spins point upward in
the direction of magnetic field. The magnon crystal forms a superlattice
with a√3 ×√3 unit cell. The bottom right inset shows hexagonal magnons
expected to appear at the 1/3, 5/9, and 7/9 plateaus. In the upper part, the
magnons are defined by the total spin Sz= 0, 1, and 2 for the six spins on
the hexagon, respectively, while in the lower part based on the magnon
picture, the number of magnons correspond to 3 (hexagon+ double circle),
2 (single circle), and 1 (only hexagon), respectively. Using the bracket
notation, the one-magnon state with Sz= 2 is expressed as
P6

i¼1 "1ð ÞiS"i j0>, where the sum is obtained inside the hexagon, and j0>
denotes the saturated state
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FIG. 4. The ground states under magnetic fields obtained from
D = 6 iTPS calculation. (a) Normalized magnetization curve, (b)
average local magnetization, (c) average local moment at T = 0
calculated using the tensor network method assuming the ratios of
the evaluated exchange constants. The illustrations describe the pre-
dicted collinear spin structure at H = 0 and field-enhanced reduction
of the local moment near the 1/2-plateau-like phase.

studies, we confirmed that the ab initio MO calculations
for verdazyl-based compounds provide reliable values of ex-
change interactions to qualitatively examine their intrinsic
behavior [45–49]. Thus, we assumed the evaluated exchange
constants to examine the qualitative behavior and fixed the
ratios as follows: J2/J1 = −0.82, J3/J1 = −0.66, J4/J1 =
−0.61, J5/J1 = 0.26, and J6/J1 = 0.20. Figure 4(a) shows
the calculated magnetization curve at T = 0, which qualita-
tively reproduces the low-field convex function and subse-
quent 1/2-plateau-like behavior. In the ground state at H = 0,
a collinear structure with twofold periodicity is realized in
each site, as shown in Fig. 4(a). Spins connected by the
weakest FM J6 in site 1 arrange in the opposite direction
to minimize an increase in the ground-state energy due to
the frustration. In the low-field region below |H/J1|"0.8,
the spins in site 1 gradually tilt toward the field direction
(H//z) with increasing field. The average local magnetization
for the field direction 〈Sz〉 in site 1 increases monotonically
up to |H/J1|"0.8, but it is still not fully polarized because
of the contribution of AFM J3 and J4 between two sites, as
shown in Fig. 4(b). Consequently, the intensively polarized
spins in site 1 do not have sufficient degrees of freedom
to modify the ground state, and site 2 forms an effective
1D J2-J5 chain. This effective 1D chain induces quantum
fluctuations attributed to its low dimensionality, resulting
in a field-enhanced reduction of the average local moment
(〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2)1/2 associated with the 1/2-plateau-
like behavior, as shown in Fig. 4(c). In the field region above
approximately |H/J1|"1.2, magnetizations in both sites in-
crease toward the fully polarized phase.
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FIG. 5. (a) 31P-NMR spectra of (o-MePy-V)PF6 at 1.4 K with
various magnetic fields for H//b. (b) Local magnetic field Hloc of
P(1) and P(2) evaluated from the spectra. (c) Temperature depen-
dence of T −1

1 for P(1) and P(2) at 2.5 and 5.0 T.

E. Nuclear magnetic resonance

To investigate the local spin states, we performed 31P-NMR
measurements. Figure 5(a) shows the 31P-NMR spectra at
1.4 K for various magnetic fields along the b axis. Two
crystallographically independent P sites, P(1) and P(2), are
located on site 1 and site 2, respectively, as shown in Fig. 1(b).
We observed corresponding two-peak signals and evaluated
the magnetic shift as a local magnetic field Hloc, as shown in
Fig. 5(b). It is difficult to determine the hyperfine coupling
constants for this compound because the two peaks overlap
with each other above 20 K, owing to the small hyperfine
couplings. However, the right peak shows a relatively large
Hloc, while the Hloc of the left peak stays near 0 at 1.4 K,
as shown in Fig. 5(b). This result is consistent with the
expectation from the numerical analysis shown in Fig. 4(b),
where 〈Sz〉 for site 1 shows large values, while 〈Sz〉 for site
2 is almost zero at lower fields. Therefore, the right and left
peaks can be attributed to P(1) and P(2) sites, respectively.
The right peak is broadened below 3 T owing to the proximity
of the ordered phase, as shown in Fig. 5(a). The Hloc at P(1)
gradually increases with increasing H up to 3 T. Above 3 T,
the Hloc at P(1) shows almost field-independent behavior,
while Hloc at P(2) shows a small negative shift. This shift
at P(2) is considered to be related to the small increase of
〈Sz〉 for site 2 combined with a negative hyperfine coupling.
Figure 5(c) shows the temperature dependence of the nuclear
spin-lattice relaxation rate T −1

1 for P(1) and P(2). In the low-
field regime at 2.5 T, T −1

1 increases with decreasing temper-
ature, indicating a magnetic phase transition with a critical
slowing down at low temperature. Conversely, in the high-
field regime at 5 T, T −1

1 decreases with decreasing temperature
because of the disappearance of the ordered phase. For the
above measurements, the stretch exponent β has a relatively
small value probably because of the insufficient separation
between two sites and/or the inhomogeneous distribution of
the internal field [53].
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