Tensor Network Solver for Quantum Lattice Systems

on MateriApperel

Yuichi Motoyama (ISSP)

2020-11-10 for TeNeS ver 1.1.2

TeNeS を最新版にする

TeNeS を使う前にMALIVE! に入っているTeNeS を更新しておきます

\$ sudo apt update # パッケージー覧を更新する \$ sudo apt install tenes # TeNeS を更新する

(先頭の \$ は入力待ち状態を示す記号なので入力しなくても良いです) (# 以降はコメントを示しているので、やはり入力しなくて大丈夫です) (install の代わりに upgrade にすると**すべての**パッケージを更新するので注意してください)

サンプルをコピー

TeNeS のサンプル集を手元にコピーしてきます

\$ cd # GoTo HOME directory \$ cp -r /usr/share/tenes . # TeNeS のサンプルをコピー \$ cd tenes/sample

(ファイル名などは途中まで入力した後に Tab キーを押すと適宜補完可能です)

sample-1 横磁場イジング模型

- ・ 最初の例として正方格子横磁場イジング模型を扱います
 - S=1/2の演算子で書かれていることと符号に注意
 - hx ~ 1.5 あたりに量子相転移があります

$$\mathcal{H} = J_z \sum_{\langle ij \rangle} S_i^z S_j^z - h_x \sum_i S_i^x$$

\$ cd 01_transverse_field_ising \$ cat simple.toml # 入力ファイルの確認

... Skipped ...

[lattice] type = "square lattice" 正方格子 L = 2 W = 2 virtual_dim = 2 ズンド次元 = 2

initial = "ferro"

[model]
type = "spin"
Jz = -1.0
Jx = 0.0
Jy = 0.0
hx = 0.0

スピン模型 強磁性イジング Jz=-1, Jx=Jy=0 横磁場 hx = 0

sample-1 横磁場イジング模型

入力ファイル simple.toml をinput.toml へと変換して tenes を実行

```
$ tenes_simple simple.toml # convert to std.toml
# main calculation
$ tenes input.toml
 # ... Skipped ...
Onesite observables per site:
                               <Sz> の実部・虚部
           = 0.50
 Sz
                               <Sx> の実部・虚部
           = -1.28526262482e - 130
 Sx
Twosite observables per site:
                               エネルギー
 hamiltonian = -0.5 0
 SzSz = 0.50
                               最近接相関
 SxSx = -1.7374919982e - 180
      = 1.73749202733e - 180
 SySy
```

... Skipped ...

5

- 横磁場を入れてみましょう
 - ・ 具体的には、 hx = 3 に変えてみます
 - \$ mv output output_hx0 # 計算結果を退避しておく
 \$ mousepad simple.toml # 入力ファイルを編集

(mousepad はメモ帳のような単純なエディタです)

(MALIVE! には他にも vim, emacs, nano が入っているのでお好きにどうぞ)

編集した入力ファイル simple.toml をinput.toml へと変換して tenes を実行 •

```
$ tenes_simple simple.toml # convert to std.toml
$ tenes input.toml
```

```
# main calculation
```

```
# ... Skipped ...
```

```
Onesite observables per site:
                                   <Sz> の実部・虚部
            = 8.05352165651e - 090
 Sz
            = 0.492509565167 0
 Sx
                                   <Sx> の実部・虚部
Twosite observables per site:
                                   エネルギー
 hamiltonian = -1.52140952585 0
 SzSz = 0.0438808303474 0
                                   最近接相関
 SxSx = 0.488706591605 0
            = -0.0407090179083 0
 SySy
```

```
# ... Skipped ...
```

sample-1 横磁場イジング模型

- ・ 横磁場をすこしずつ変えながら計算していくと量子相転移を観測できます
 - 単純作業を手でやるのは不毛なのでプログラムを書くのが良いです
 - tutorial_example.py と tutorial_read.py が用意されています

\$ python3 tutorial_read.py > result.dat # ファイルへ保存

sample-1 横磁場イジング模型

- ・ 出力された 4列の意味は順番に、
 - 横磁場 hx
 - ・ サイトあたりのエネルギー
 - ・ サイトあたりの縦磁化 Sz
 - サイトあたりの横磁化 Sx
- gnuplot でプロットしてみましょう

\$ gnuplot

gnuplot> set style data lp
gnuplot> pl 'result.dat' u 1:3 t 'Sz', '' u 1:4 t 'Sx'

(実際の計算ではボンド次元などのハイパーパラメータを変えて結果の収束のしかたを確認します)

その他のサンプル

02_AFH_square

•

- ・ 正方格子 S=1/2 反強磁性ハイゼンベルグ模型
- ボンド次元や full update のステップ数を変えたときに得られる基底状態
 エネルギーの振る舞い

その他のサンプル

- 03_S1_AFH_square
 - ・ S=1 反強磁性ハイゼンベルグ模型の入力ファイル例
- 04_Kitaev_honeycomb
 - ・ S=1/2 蜂の巣格子 Kitaev 模型の入力ファイル例
- 05_magnetization

•

•

・ S=1/2 反強磁性ハイゼンベルグ模型の、正方格子・三角格子での磁化曲線

その他のサンプル

06_hardcore_boson_triangular

•

- 三角格子ハードコアボースハバード模型
- ・ 固体相・超流動相・超固体相の計算
 - ・ 超流動性は非対角秩序変数 で判断する
 - ・ 固体相のために構造因子 S(Q) を計算する例を含む(やや高度)

MALIVE! 以外での注意

- sample 以下にあるPython スクリプトでは、 tenes や tenes_simple などを 修飾なしに実行します
 - ・ これらの実行ファイルへの PATH が通っている必要があります
 - tenes を MPI 並列実行する場合は、スクリプト中の最初の方にある MPI_cmd を修正してください
 - 例: MPI_cmd = "mpiexec -np 2"
 - OpenMP の並列数は環境変数 OMP_NUM_THREADS を設定してください
 tenes_simple / tenes_std ではいくつかのPython パッケージを必要とします
 - NumPy, SciPy, toml
 - ・ 実行時に見つからなかった場合は適宜入れましょう
 - pip3 install --user numpy scipy toml
 - ・ --user を使うと自分のホームディレクトリ以下にインストールできます