
TeNeS Documentation
Release 1.0.0

Institute for Solid State Physics, University of Tokyo

Apr 18, 2020

CONTENTS

1 What is TeNeS ? 1
1.1 Overview . 1
1.2 Developers . 1
1.3 Version information . 1
1.4 License . 2
1.5 Copyright . 2

2 Install 3
2.1 Download . 3
2.2 Prerequisites . 3
2.3 Install . 4

3 Usage 7
3.1 Usage of tenes_simple . 7
3.2 Usage of tenes_std . 9
3.3 Usage of tenes . 11

4 Tutorial 13
4.1 Ising model with transverse magnetic field . 13
4.2 Magnetization process of the Heisenberg model on triangular and square lattices 16

5 File format 21
5.1 Short summary for input files of TeNeS . 21
5.2 Input file for tenes_simple . 22
5.3 Input file for tenes_std . 31
5.4 Input file for tenes . 40
5.5 Output files . 50

6 Algorithm 53
6.1 Tensor Network States . 53
6.2 Contraction of iTPS . 54
6.3 Optimization of iTPS . 57

7 Acknowledgement 61

8 Contacts 63

i

ii

CHAPTER

ONE

WHAT IS TENES ?

1.1 Overview

TeNeS (Te nsor Ne twork S olver) is an open-source program package for calculation of two-dimensional many-body
quantum states based on the tensor network method. This package calculates ground-state wavefunctions for user-
defined Hamiltonian, and evaluates user-defined physical quantities such as magnetization and correlation functions.
For predefined models and lattices, there is a tool that makes it easy for users to generate input files. TeNeS uses
an OpenMP/MPI hybrid parallelized tensor operation library and thus can deal with large-scale calculation by using
massively parallel machines.

1.2 Developers

TeNeS is developed by the following members.

• ver 1.0

– Tsuyoshi Okubo (Graduate School of Science, Univ. of Tokyo)

– Satoshi Morita (Institute for Solid State Physics, Univ. of Tokyo)

– Yuichi Motoyama (Institute for Solid State Physics, Univ. of Tokyo)

– Kazuyoshi Yoshimi (Institute for Solid State Physics, Univ. of Tokyo)

– Takeo Kato (Institute for Solid State Physics, Univ. of Tokyo)

– Naoki Kawashima (Institute for Solid State Physics, Univ. of Tokyo)

1.3 Version information

• ver. 1.0.0: 2020-04-17.

• ver. 1.0-beta: 2020-03-30.

• ver. 0.1: 2019-12-04.

1

TeNeS Documentation, Release 1.0.0

1.4 License

This package is distributed under GNU General Public License version 3 (GPL v3) or later.

1.5 Copyright

© 2019- The University of Tokyo. All rights reserved.

This software was developed with the support of “Project for advancement of software usability in materials science”
of The Institute for Solid State Physics, The University of Tokyo.

2 Chapter 1. What is TeNeS ?

CHAPTER

TWO

INSTALL

2.1 Download

You can download the source code for TeNeS from the GitHub page . If you have git installed on your machine, type
the following command to start download:

$ git clone https://github.com/issp-center-dev/TeNeS

2.2 Prerequisites

The following tools are required for building TeNeS.

1. C++11 compiler

2. CMake (>=3.6.0)

TeNeS depends on the following libraries, but these are downloaded automatically through the build process.

1. mptensor

2. cpptoml

3. sanitizers-cmake

TeNeS can use MPI and ScaLAPACK for parallel operations of tensors. MPI and ScaLAPACK must be installed
by yourself. For example, if you use Debian GNU/Linux (or Debian based system such as Ubuntu) and have root
priviledges, you can easily install them by the following:

sudo apt install openmpi-bin libopenmpi-dev libscalapack-mpi-dev

For others, see the official instruction of some MPI implementation and ScaLAPACK.

Python3 is required for the input file generators, tenes_simple and tenes_std . Additionary, the following
python packages are also required.

1. numpy

2. scipy

3. toml

3

https://github.com/issp-center-dev/TeNeS
https://github.com/smorita/mptensor
https://github.com/skystrife/cpptoml
https://github.com/arsenm/sanitizers-cmake

TeNeS Documentation, Release 1.0.0

2.3 Install

1. Build TeNeS by typing the following commands:

$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<path to install to> ..
$ make

The default value of the <path to install to> is /usr/local.

(Some environment such as CentOS provides CMake3 as cmake3 .)

The executable file tests will be generated in build/src directory. By typing the following command, tests for
tenes can be done.

$ make tests

2. Install TeNeS by typing the following commands:

$ make install

In this case, tenes, tenes_std and tenes_simple are installed into the <path to install to>/bin .

Disable MPI/ScaLAPACK parallelization

If you want to disable MPI/ScaLAPACK parallelization, pass -DENABLE_MPI=OFF option to cmake command.
On macOS, some functions of ScaLAPACK are incompatible with the system’s BLAS and LAPACK, and TeNeS ends
in error. It is recommended to disable MPI parallel.

Specify compiler

CMake detects your compiler automatically but sometimes this does not work. In this case, you can specify the
compiler by the following way,

$ cmake -DCMAKE_CXX_COMPILER=<path to your compiler> ../

Use the pre-built mptensor

TeNeS is based on the parallerized tensor library mptensor. The build system of TeNeS installs this automatically,
but if you want to use the specific version of the mptensor, please add the following option in cmake.

$ cmake -DMPTENSOR_ROOT=<path to mptensor> ../

Specify Python interpreter

TeNeS tools (tenes_simple and tenes_std) use python3 interpreter which is found in PATH via /usr/
bin/env python3. Please make sure that python3 command invokes the interpreter which you want to use, for
example, by using type python3.

If you want to fix the interpreter (or /usr/bin/env does not exist), you can specify the interpreter by the following
way,

4 Chapter 2. Install

TeNeS Documentation, Release 1.0.0

$ cmake -DTENES_PYTHON_EXECUTABLE=<path to your interpreter> ../

2.3. Install 5

TeNeS Documentation, Release 1.0.0

6 Chapter 2. Install

CHAPTER

THREE

USAGE

tenes, the main program of TeNeS, needs an input file to define the model, order of operations, etc. For ease of use
to make the input file, the following script is provided (the schematic flow is shown Fig. 3.1):

• tenes_std : A tool that generates an input file to execute tenes. An input file of tenes_std defines a
lattice model etc. by yourself according to a predetermined format.

• tenes_simple: A tool that generates input files for tenes_std from another simpler input file which
specifies lattice model predefined.

In order to simulate other models and/or lattices than predefined ones, you should create the input file of tenes_std
and convert it. Please see File format for details on the input files of TeNeS.

tenes_simple

simple.toml

tenes_std

std.toml

tenes

input.toml parameters.dat
density.dat
onesite_obs.dat
twosite_obs.dat
correlation.dat
time.dat

Fig. 3.1: Schematic calculation flow of TeNeS

The following sections describe how to use each script, and finally how to use tenes.

3.1 Usage of tenes_simple

tenes_simple is a tool that creates an input file of tenes_std for predefined models and lattices.

$ tenes_simple simple.toml

• Takes a file as an argument

• Output an input file for tenes_std

• Command line options are as follows

– --help

* Show help message

7

TeNeS Documentation, Release 1.0.0

– --version

* Show version number

– --output=filename

* Specify the output file name filename

* Default is std.toml

* File name cannot be the same as the input file name

– --coordinatefile=coordfile

* Specify the output coordinate file name coordfile

* Default is coordinates.dat

* In a coordinate file, the first, second, and third columns denote site index, x coordinate, and y coordi-
nate (in Cartesian), respectively.

The currently defined models and lattices are as follows:

• Model

– Spin system

• Lattice

– Square lattice

– Triangular lattice

– Honeycomb lattice

– Kagome lattice

See Input file for tenes_simple for details of the input file. Below, a sample file for the S=1/2 Heisenberg model on the
square lattice is shown.

[lattice]
type = "square lattice" # type of lattice
L = 2 # size of unitcell
W = 2 # size of unitcell
virtual_dim = 3 # bond dimension
initial = "antiferro" # initial state

[model]
type = "spin" # type of model
J = 1.0 # Heisenberg interaction

[parameter]
[parameter.general]
is_real = true # use real tensor

[parameter.simple_update]
num_step = 1000 # number of steps
tau = 0.01 # imaginary time step

[parameter.full_update]
num_step = 0 # number of steps
tau = 0.01 # imaginary time step

[parameter.ctm]
dimension = 9 # bond dimension

8 Chapter 3. Usage

TeNeS Documentation, Release 1.0.0

3.2 Usage of tenes_std

tenes_std is a tool to calculate imaginary time evolution operators exp (−𝜏ℋ𝑖𝑗) from a given Hamiltonian ℋ and
an imaginary time step 𝜏 , and to generate an input file for tenes.

$ tenes_std std.toml

• Takes a file as an argument

• Output an input file for tenes

• Command line options are as follows

– --help

* Show help message

– --version

* Show version number

– --output=filename

* Specify the output file name filename

* Default is input.toml

* File name cannot be the same as the input file name

By making and editing input files, users can simulate on other models and lattices than predefined ones. See Input file
for tenes_std for details of the input file. Below, a sample file for the S=1/2 Heisenberg model on the square lattice is
shown.

[parameter]
[parameter.general]
is_real = true # limit tensors as real-valued ones
[parameter.simple_update]
num_step = 1000 # number of steps
tau = 0.01 # imaginary time step
[parameter.full_update]
num_step = 0 # number of steps
tau = 0.01 # imaginary time step
[parameter.ctm]
dimension = 9 # bond dimension

[tensor]
type = "square lattice"
L_sub = [2, 2] # unitcell size
skew = 0 # boundary condition

tensors in unitcell
[[tensor.unitcell]]
index = [0, 3] # index of tensors
physical_dim = 2 # physical bond dimension
virtual_dim = [3, 3, 3, 3]

virtual bond dimension
noise = 0.01 # noise in initial tensor
initial_state = [1.0, 0.0]

initial state

[[tensor.unitcell]]

(continues on next page)

3.2. Usage of tenes_std 9

TeNeS Documentation, Release 1.0.0

(continued from previous page)

index = [1, 2]
physical_dim = 2
virtual_dim = [3, 3, 3, 3]
noise = 0.01
initial_state = [0.0, 1.0]

(bond) hamiltonian
[[hamiltonian]]
dim = [2, 2] # physical bond dimensions
bonds = """ # bond information
0 1 0 # first: index of one site
1 1 0 # second: x coord of the other
2 1 0 # third: y coord of the other
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
elements = """ # nonzero elements of tensor
0 0 0 0 0.25 0.0 # first: initial state of one site
1 0 1 0 -0.25 0.0 # second: initial state of the other
0 1 1 0 0.5 0.0 # third: final state of one site
1 0 0 1 0.5 0.0 # fourth: final state of the other
0 1 0 1 -0.25 0.0 # fifth: real part
1 1 1 1 0.25 0.0 # sixth: imag part
"""

observables
[observable]
[[observable.onesite]]
name = "Sz" # name
group = 0 # index
sites = [] # sites to be acted
dim = 2 # dimension
elements = """ # nonzero elements
0 0 0.5 0.0
1 1 -0.5 0.0
"""

[[observable.twosite]]
name = "hamiltonian"
group = 0
dim = [2, 2]
bonds = """
0 1 0
1 1 0
2 1 0
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
elements = """
0 0 0 0 0.25 0.0

(continues on next page)

10 Chapter 3. Usage

TeNeS Documentation, Release 1.0.0

(continued from previous page)

1 0 1 0 -0.25 0.0
0 1 1 0 0.5 0.0
1 0 0 1 0.5 0.0
0 1 0 1 -0.25 0.0
1 1 1 1 0.25 0.0
"""

[[observable.twosite]]
name = "SzSz"
group = 1
dim = [2, 2]
bonds = """
0 1 0
1 1 0
2 1 0
3 1 0
0 0 1
1 0 1
2 0 1
3 0 1
"""
ops = [0, 0] # index of onesite operators

3.3 Usage of tenes

tenes is the main program of TeNeS.

$ tenes input.toml

• Take the input file name as an argument

• The command line options are:

– --help - Show help messages.

– --version - Show the version number.

– --quiet - Do not print any messages to the standard output.

In many cases, users do not have to edit the input file directly. See Input file for tenes for details of the input file.

3.3. Usage of tenes 11

TeNeS Documentation, Release 1.0.0

12 Chapter 3. Usage

CHAPTER

FOUR

TUTORIAL

4.1 Ising model with transverse magnetic field

This section presents a calculation of the transverse magnetic field Ising model as an example. By changing the
variable G in the input file, the magnitude of the transverse magnetic field will be modified. For example, when the
transverse magnetic field is 0, the input file is

[parameter]
[parameter.general]
is_real = true

[parameter.simple_update]
num_step = 1000
tau = 0.01

[parameter.full_update]
num_step = 0
tau = 0.01

[parameter.ctm]
iteration_max = 10
dimension = 10

[lattice]
type = "square lattice"
L = 2
W = 2
virtual_dim = 2
initial = "ferro"

[model]
type = "spin"
Jz = -1.0
Jx = 0.0
Jy = 0.0
G = 0.0

In this case, since Jz = -1.0 , the ferromagnetic state manifests itself as the ground state at G=0. When the input
file name is simple.toml , type the following commands to execute tenes (before typing them, please install
TeNeS and set PATH properly.):

$ tenes_simple simple.toml
$ tenes_std std.toml
$ tenes input.toml

13

TeNeS Documentation, Release 1.0.0

Then, the following logs are output:

Number of Processes: 1
Number of Threads / Process: 1
Tensor type: real
Start simple update
10% [100/1000] done
20% [200/1000] done
30% [300/1000] done
40% [400/1000] done
50% [500/1000] done
60% [600/1000] done
70% [700/1000] done
80% [800/1000] done
90% [900/1000] done
100% [1000/1000] done
Start calculating observables
Start updating environment
Start calculating onesite operators
Save onesite observables to output_0/onesite_obs.dat
Start calculating twosite operators
Save twosite observables to output_0/twosite_obs.dat
Save observable densities to output_0/density.dat
Save elapsed times to output_0/time.dat

Onesite observables per site:
Sz = 0.5 0
Sx = -1.28526262482e-13 0
Twosite observables per site:
hamiltonian = -0.5 0
SzSz = 0.5 0
SxSx = -1.7374919982e-18 0
SySy = 1.73749202733e-18 0
Wall times [sec.]:
simple update = 3.545813509
full update = 0
environmnent = 0.123170523
observable = 0.048149856

Done.

First, the information of parallelization and the tensors (complex or not) is displayed. Next, the execution status
of the calculation process is displayed. After finishing the calculation, the expected values per site of the one-site
operators Sz, Sx and two-site ones Hamiltonian, the nearest correlation SzSz, SxSx, SySy are output. Finally,
the calculation time for each process is output in units of seconds. density.dat, parameters.dat, time.
dat, onesite_obs.dat, and twosite_obs.dat are saved to the output directory. For details on each output
file, see Output files. For example, the value of <Sz> can be read from onesite_obs.dat. By changing G in
increments of 0.2 from 0 to 3.0 and running tenes_simple and tenes, the following result is obtained. As an
example of the sample script, tutorial_example.py , tutorial_read.py are prepared in the sample/
01_transverse_field_ising directory.

• tutorial_example.py

import subprocess

import numpy as np

import toml
(continues on next page)

14 Chapter 4. Tutorial

TeNeS Documentation, Release 1.0.0

(continued from previous page)

num_g = 16
min_g = 0.0
max_g = 3.0

total = 0
for idx, g in enumerate(np.linspace(min_g, max_g, num=num_g)):

print("Caclulation Process: {}/{}".format(idx+1, num_g))
with open("simple.toml") as f:

dict_toml = toml.load(f)
dict_toml["parameter"]["general"]["output"] = "output_{}".format(idx)
dict_toml["model"]["G"] = float(g)
with open("simple_{}.toml".format(idx), 'w') as f:

toml.dump(dict_toml, f)
cmd = "tenes_simple simple_{}.toml -o std_{}.toml".format(idx, idx)
subprocess.call(cmd.split())
cmd = "tenes_std std_{}.toml -o input_{}.toml".format(idx, idx)
subprocess.call(cmd.split())
cmd = "tenes input_{}.toml".format(idx)
subprocess.call(cmd.split())

• tutorial_read.py

from os.path import join

import numpy as np

import toml

num_g = 16

for idx in range(num_g):
try:

with open("simple_{}.toml".format(idx)) as f:
dict_toml = toml.load(f)

g = dict_toml["model"]["G"]
ene = 0.0
mag_sz = 0.0
mag_sx = 0.0
with open(join("output_{}".format(idx), "density.dat")) as f:

for line in f:
words = line.split()
if words[0] == 'hamiltonian':

ene = words[2]
elif words[0] == 'Sz':

mag_sz = words[2]
elif words[0] == 'Sx':

mag_sx = words[2]
print("{} {} {} {}".format(g, ene, mag_sz, mag_sx))

except:
continue

The calculation will be done by typing the following command:

4.1. Ising model with transverse magnetic field 15

TeNeS Documentation, Release 1.0.0

$ python tutorial_example.py

For MacBook2017 (1.4 GHz Intel Core i7), the calculation was finished in a few minutes. By typing the following
command, G, energy, <Sz> and <Sx> are outputted in the standard output:

$ python tutorial_read.py

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.5 1 1.5 2 2.5 3

Fig. 4.1: G dependence of <Sz> and <Sx>.

As seen from Fig. 4.1 , with increasing G, the <Sz> decreases from 0.5 to 0, while the <Sx> increases from 0 to
0.5.

4.2 Magnetization process of the Heisenberg model on triangular and
square lattices

Next, we introduce the calculation of the magnetization process of the quantum Heisenberg model with spin 𝑆 = 1/2
defined on a triangular lattice. The Hamiltonian looks like this:

𝐻 = 𝐽
∑︁
⟨𝑖,𝑗⟩

𝑥,𝑦,𝑧∑︁
𝛼

𝑆𝛼
𝑖 𝑆

𝛼
𝑗 − ℎ

∑︁
𝑖

𝑆𝑧
𝑖

Here, ⟨𝑖, 𝑗⟩ represents the pair of nearest neighbor sites, and ℎ represents the magnitude of the external magnetic field
applied in the 𝑧 direction. Let’s calculate the ground state of this model and find ⟨𝑆𝑧⟩ ≡ 1

𝑁𝑢

∑︀𝑁𝑢

𝑖 ⟨𝑆𝑧
𝑖 ⟩, where 𝑁𝑢 is

the total number of sites in the unit cell, as a function of the magnetic field ℎ. To do this, the toml file basic.toml
and the python script tutorial_magnetization.py are prepared in the sample/05_magnetization di-
rectory. The basic.toml file contains model settings and parameters.

[parameter]
[parameter.general]
is_real = true

(continues on next page)

16 Chapter 4. Tutorial

TeNeS Documentation, Release 1.0.0

(continued from previous page)

[parameter.simple_update]
num_step = 200
tau = 0.01

[parameter.full_update]
num_step = 0
tau = 0.01

[parameter.ctm]
iteration_max = 100
dimension = 10

[lattice]
type = "triangular lattice"
L = 3
W = 3
virtual_dim = 2
initial = "random"

[model]
type = "spin"
J = 1.0

The lattice section specifies a triangular lattice with the unit cell size of 3 × 3. Here, in order to make the
calculation lighter, only simple update is performed, and the imaginary time interval 𝜏 is assumed to be 𝜏 = 0.01.
For simplicity, 𝐽 = 1. Using this basic setting file, tutorial_magnetization.py calculates the magnetization when the
magnetic field is swept.

import subprocess
from os.path import join
import numpy as np
import toml

num_h = 21
min_h = 0.0
max_h = 5.0
num_step_table = [100, 200, 500, 1000, 2000]

fmag = open("magnetization.dat","w")
fene = open("energy.dat","w")
for idx, h in enumerate(np.linspace(min_h, max_h, num=num_h)):

print("Caclulation Process: {}/{}".format(idx+1, num_h))
inum = 0
num_pre = 0
fmag.write("{} ".format(h))
fene.write("{} ".format(h))
for num_step in num_step_table:

ns = num_step - num_pre
print("Steps: {}".format(num_step))
with open("basic.toml") as f:

dict_toml = toml.load(f)
dict_toml["parameter"]["general"]["output"] = "output_{}_{}".format(idx,num_

→˓step)
dict_toml["parameter"]["general"]["tensor_save"] = "tensor_save".format(idx,

→˓num_step)
dict_toml["model"]["H"] = float(h)

(continues on next page)

4.2. Magnetization process of the Heisenberg model on triangular and square lattices 17

TeNeS Documentation, Release 1.0.0

(continued from previous page)

dict_toml["parameter"]["simple_update"]["num_step"] = ns
if inum > 0:

dict_toml["parameter"]["general"]["tensor_load"] = "tensor_save".
→˓format(idx,num_pre)

with open("simple_{}_{}.toml".format(idx,num_step), 'w') as f:
toml.dump(dict_toml, f)

cmd = "tenes_simple simple_{}_{}.toml -o std_{}_{}.toml".format(idx,num_step,
→˓idx,num_step)

subprocess.call(cmd.split())
cmd = "tenes_std std_{}_{}.toml -o input_{}_{}.toml".format(idx,num_step,idx,

→˓num_step)
subprocess.call(cmd.split())
cmd = "tenes input_{}_{}.toml".format(idx,num_step)
subprocess.call(cmd.split())
with open(join("output_{}_{}".format(idx,num_step), "density.dat")) as f:

lines = f.readlines()
mag_sz = lines[0].split('=')[1].strip()
ene = lines[2].split('=')[1].strip()

fene.write("{} ".format(ene))
fmag.write("{} ".format(mag_sz))
inum = inum + 1
num_pre = num_step

fene.write("\n")
fmag.write("\n")

fene.close()
fmag.close()

In this script, the magnetic field ℎ is changed in steps of 0.25 from 0 to 5, and the ground state energy and ⟨𝑆𝑧⟩
are calculated and output to energy.dat and magnetization.dat, respectively. In order to see what happens
when the number of time steps for simple update is changed, calculations are also performed with 100, 200, 500,
1000, and 2000 steps for each magnetic field. In order to reduce the amount of calculation, the information of the
wave function obtained with a small number of steps is stored in tensor_save, and this is used as the initial state
for the calculation of a larger number of steps. For example, the python script first performs a calculation with the
number of time steps set to 100, and output the result. Then, it perform a calculation with the number of time steps
set to 200 using the wave function at the end of the calculation of the number of steps 100. The script consequently
reduce the amount of the calculation by 100 steps for the latter in the directory.

Let’s actually run it. After passing through a path to tenes in advance, execute calculation by typing as follows.

python tutorial_magnetization.py

The calculation will finish within a few hours if you use a notebook PC using a single processor. After the calculation
is completed, start up gnuplot and type

load 'plot.gp'

to obtain the magnetization curve as shown in the right panel of Fig. 4.2. In a similar way,

load 'plot_ene.gp'

we obtain the ground-state energy as shown in the left panel of Fig. 4.2 .

As can be seen from the result for a sufficiently large number of steps (for example, 2000 steps), a plateau structure
occurs in the magnetization process at the magnetization of 1/3 of the saturation magnetization ⟨𝑆𝑧⟩ = 0.5. On this
plateau, spins on the three lattices form a periodic magnetic structure with ↑, ↑, ↓, and a spin gap is generated. This
plateau structure is unique to the triangular lattice. To see whether the accuracy of calculation is enough or not, it is
helpful to check the step dependence of energy. In principle, the ground-state energy should decrease as the number

18 Chapter 4. Tutorial

TeNeS Documentation, Release 1.0.0

of steps increases, but in some magnetic fields, the calculated energy increases. This is a sign that the calculation
accuracy is not good. It is presumed that it is necessary to increase the bond dimension.

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0 1 2 3 4 5

En
er

gy

Magnetic Field

nstep = 100
nstep = 200
nstep = 500

nstep = 1000
nstep = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5
Sz

Magnetic Field

nstep = 100
nstep = 200
nstep = 500

nstep = 1000
nstep = 2000

Fig. 4.2: Ground state energy (left figure) and magnetization (right figure) of the Heisenberg model on the triangular
lattice.

Next, let’s perform the calculation for a model on a square lattice. Use the toml file basic_square.toml and the
python script tutorial_magnetization_square.py in the sample/05_magnetization directory. The
content of basic_square.toml is the same as basic.toml except that the lattice section has been changed
as follows.

[lattice]
type = "square lattice"
L = 2
W = 2

To perform the calculation, type:

python tutorial_magnetization_square.py

After the calculation is completed, start up gnuplot and type

load 'plot_square.gp'

Then, the magnetization curve shown in the right panel of Fig. 4.3 is obtained. In a similar way, by typing the following
command,

load 'plot_ene_square.gp'

you will obtain the ground-state energy as shown in the left panel of Fig. 4.3. The calculation is almost converged at
2000 steps, and it can be seen that the plateau structure does not appear unlike the triangular lattice Heisenberg model.
Since the energy generally decreases as the number of steps is increased, it is assumed that the calculation accuracy is
sufficiently high.

4.2. Magnetization process of the Heisenberg model on triangular and square lattices 19

TeNeS Documentation, Release 1.0.0

-2.2
-2

-1.8
-1.6
-1.4
-1.2
-1

-0.8
-0.6
-0.4

 0 1 2 3 4 5

En
er

gy

Magnetic Field

nstep = 100
nstep = 200
nstep = 500

nstep = 1000
nstep = 2000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5

Sz

Magnetic Field

nstep = 100
nstep = 200
nstep = 500

nstep = 1000
nstep = 2000

Fig. 4.3: Ground state energy (left figure) and magnetization (right figure) of the Heisenberg model on the square
lattice.

20 Chapter 4. Tutorial

CHAPTER

FIVE

FILE FORMAT

5.1 Short summary for input files of TeNeS

Input files of TeNeS is written in TOML format and each file has some sections. tenes_simple and tenes_std
read some sections and generate an input file for tenes_std and tenes, respectively. tenes reads some sections
and performs simulation.

For example, tenes_simple reads model and lattice sections and generates tensor, observable, and
hamiltonian ones. Additionary, this copies parameter and correlation sections.

The following table summarizes how each tool deal with sections.

Section tenes_simple tenes_std tenes
parameter copy in / copy in
model in
lattice in
tensor out in / copy in
observable out copy in
correlation copy copy in
hamiltonian out in
evolution out in

• “in”

– Tool uses this section as input

• “out”

– Tool generates this section in output (= next input)

• “copy”

– Tool copies this section into output (= next input)

21

https://github.com/toml-lang/toml/blob/master/versions/ja/toml-v0.5.0.md

TeNeS Documentation, Release 1.0.0

5.2 Input file for tenes_simple

• File format is TOML format.

• The input file has four sections : model, parameter, lattice, correlation .

– The parameter section is copied to the standard mode input.

5.2.1 model section

Specify the model to calculate. In this version, spin system ("spin") is defined.

Name Description Type Default
type Model type String –

The parameter names such as interactions depend on the model type.

Spin system: "spin"

Hamiltonian is described as

ℋ =
∑︁
⟨𝑖𝑗⟩

[︃
𝑥,𝑦,𝑧∑︁
𝛼

𝐽𝛼
𝑖𝑗𝑆

𝛼
𝑖 𝑆

𝛼
𝑗 + 𝐵

(︁
𝑆⃗𝑖 · 𝑆⃗𝑗

)︁2
]︃
−

∑︁
𝑖

[︁
𝐻𝑆𝑧

𝑖 + Γ𝑆𝑥
𝑖 −𝐷 (𝑆𝑧

𝑖)
2
]︁

The parameters of the one-body terms are defined as follows.

Name Description Type Default
S Magnituide of the local spin Real (integer or half integer) 0.5
H longitudinal magnetic field 𝐻 Real 0.0
G Transverse magnetic field Γ Real 0.0
D On-site spin anisotropy 𝐷 Real 0.0

The exchange interaction 𝐽 can have a bond dependency.

Name Description Type Default
J0 Exchange interaction of 0th direction nearest neighbor bond Real 0.0
J1 Exchange interaction of 1st direction nearest neighbor bond Real 0.0
J2 Exchange interaction of 2nd direction nearest neighbor bond Real 0.0
J0' Exchange interaction of 0th direction next nearest neighbor bond Real 0.0
J1' Exchange interaction of 1st direction next nearest neighbor bond Real 0.0
J2' Exchange interaction of 2nd direction next nearest neighbor bond Real 0.0
J0'' Exchange interaction of 0th direction third nearest neighbor bond Real 0.0
J1'' Exchange interaction of 1st direction third nearest neighbor bond Real 0.0
J2'' Exchange interaction of 2nd direction third nearest neighbor bond Real 0.0

The bond direction depends on the lattice defined in the lattice section. For a square lattice, for example, coupling
constants along two bond directions can be defined, x-direction (0) and y-direction (1). By omitting the direction
number, you can specify all directions at once. You can also specify Ising-like interaction by adding one character of
xyz at the end. If the same bond or component is specified twice or more, an error will occur.

To summarize,

22 Chapter 5. File format

https://github.com/toml-lang/toml/blob/master/versions/ja/toml-v0.5.0.md

TeNeS Documentation, Release 1.0.0

Order
omit : 1st nearest neighbor
’ : 2nd nearest neighbor
’’ : 3rd nearest neighbor

Bondtype (0,1,or 2)
omitting means 0=1=2

Spin component (x,y,or z)
omitting means x=y=z

The biquadratic interaction 𝐵 can also have a bond dependency like as 𝐽 .

Name Description Type Default
B0 Biquadratic interaction of 0th direction nearest neighbor bond Real 0.0
B1 Biquadratic interaction of 1st direction nearest neighbor bond Real 0.0
B2 Biquadratic interaction of 2nd direction nearest neighbor bond Real 0.0
B0' Biquadratic interaction of 0th direction next nearest neighbor bond Real 0.0
B1' Biquadratic interaction of 1st direction next nearest neighbor bond Real 0.0
B2' Biquadratic interaction of 2nd direction next nearest neighbor bond Real 0.0
B0'' Biquadratic interaction of 0th direction third nearest neighbor bond Real 0.0
B1'' Biquadratic interaction of 1st direction third nearest neighbor bond Real 0.0
B2'' Biquadratic interaction of 2nd direction third nearest neighbor bond Real 0.0

One-site operators 𝑆𝑧 and 𝑆𝑥 are automatically defined. If parameter.general.is_real = false, 𝑆𝑦 is
also defined. In addition, bond hamiltonian

ℋ𝑖𝑗 =

[︃
𝑥,𝑦,𝑧∑︁
𝛼

𝐽𝛼
𝑖𝑗𝑆

𝛼
𝑖 𝑆

𝛼
𝑗 + 𝐵

(︁
𝑆⃗𝑖 · 𝑆⃗𝑗

)︁2
]︃
− 1

𝑧

[︁
𝐻

(︀
𝑆𝑧
𝑖 + 𝑆𝑧

𝑗

)︀
+ Γ

(︀
𝑆𝑥
𝑖 + 𝑆𝑥

𝑗

)︀
−𝐷

(︁
(𝑆𝑧

𝑖)
2

+
(︀
𝑆𝑧
𝑗

)︀2)︁]︁
,

and spin correlations with nearest neighbor bonds 𝑆𝛼
𝑖 𝑆

𝛼
𝑗 (𝛼 = 𝑥, 𝑦, 𝑧) are automatically defined as two-site operators.

5.2. Input file for tenes_simple 23

TeNeS Documentation, Release 1.0.0

5.2.2 lattice section

Specify the lattices to calculate. Square, triangular, honeycomb, and Kagome lattices are defined.

Name Description Type Default
type lattice name (square, triangular or honeycomb lattice) String –
L Unit cell size in x direction Integer –
W Unit cell size in y direction Integer L
virtual_dim Bond dimension Integer –
initial Inital state String random
noise Noise for elements in initial tensor Real 1e-2

initial and noise are parameters that determine the initial state of the wave function. If tensor_load is set in
parameter.general, initial is ignored.

• initial

– "ferro"

* Ferromagnetic state with 𝑆𝑧 = 𝑆

– "antiferro"

* Antiferromagnetic state. For square lattice and honeycomb lattice, the Neel order state (𝑆𝑧 = 𝑆
for the A sublattice and 𝑆𝑧 = −𝑆 for the B sublattice.) For triangular lattice and kagome lattice,
the 120 degree order state (spins on sites belonging to the A, B, and C sublattice are pointing to
(𝜃, 𝜑) = (0, 0), (2𝜋/3, 0) and (2𝜋/3, 𝜋) direction, respectively.)

– "random"

* Random state.

• noise

– The amount of fluctuation in the elements of the initial tensor

Square lattice

A square lattice type = "square lattice" consists of L sites in the (1, 0) direction and W sites in the (0, 1)
direction. As a concrete example, Fig. 5.1 (a) shows the structure for L=3, W=3. In addition, the definitions of
the first, second and third nearest neighbor bonds are shown in Fig. 5.1 (b), (c), and (d), respectively. The blue line
represents a bond of bondtype = 0 and the red line represents a bond of bondtype = 1.

Triangular lattice

A triangular lattice type = "triangular lattice" consists of L sites in the (1, 0) direction and W sites in
the (1/2,

√
3/2) direction. As a concrete example, Fig. 5.2 (a) shows the structure for L=3, W=3. In addition, the

definitions of the first, second and third nearest neighbor bonds are shown in Fig. 5.2 (b), (c), and (d), respectively.
The blue, red, and green lines represent bonds of bondtype = 0, 1, and 2, respectively.

24 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

bondtype = 0
bondtype = 1

bondtype = 0
bondtype = 1 bondtype = 0

bondtype = 1

(a) (b)

(c) (d)

Fig. 5.1: Square lattice. (a) Site structure with L=3, W=3 (b) Nearest neighbor bonds. bondtype=0 (blue) bond
extends in the 0 degree direction and bondtype=1 (red) one in the 90 degree direction. (c) Second nearest neigh-
bor bonds. bondtype=0 (blue) bond extends in the 45 degree direction and bondtype=1 (red) one in the -45
degree direction. (d) Third nearest neighbor bonds. bondtype=0 (blue) bond extends in the 0 degree direction and
bondtype=1 (red) one in the 90 degree direction.

5.2. Input file for tenes_simple 25

TeNeS Documentation, Release 1.0.0

(a)

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

(b)

(c) (d)

Fig. 5.2: Triangular lattice. (a) Site structure with L=3, W=3 (b) Nearest neighbor bonds. bondtype=0 (blue)
bond extends in the 0 degree direction, bondtype=1 (red) one in the 60 degree direction, and bondtype=2 (green)
one in the 120 degree direction. (c) Second nearest neighbor bonds. bondtype=0 (blue) bond extends in the
90 degree direction, bondtype=1 (red) one in the -30 degree direction, and bondtype=2 (green) one in the 30
degree direction. (d) Third nearest neighbor bonds. bondtype=0 (blue) bond extends in the 0 degree direction,
bondtype=1 (red) one in the 60 degree direction, and bondtype=2 (green) one in the 120 degree direction.

26 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

Honeycomb lattice

In a honeycomb lattice type = "honeycomb lattice", units consisting of two sites of coordinates (0, 0) and
(
√

3/2, 1/2) are arranged with L units in the (
√

3, 0) direction and W units in the (1/2, 3/2) direction. As a concrete
example, Fig. 5.3 (a) shows the structure for L=3, W=3. In addition, the definitions of the first, second and third
nearest neighbor bonds are shown in Fig. 5.3 (b), (c), and (d), respectively. The blue, red, and green lines represent
bonds of bondtype = 0, 1, and 2, respectively.

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

bondtype = 0
bondtype = 1
bondtype = 2

(a)

(b)

(c) (d)

Fig. 5.3: Honeycomb lattice. (a) Site structure with L=3, W=3. The dashed ellipse denotes one unit. (b) Nearest
neighbor bonds. bondtype=0 (blue) bond extends in the 30 degree direction, bondtype=1 (red) one in the 150
degree direction, and bondtype=2 (green) one in the -90 degree direction. (c) Second nearest neighbor bonds.
bondtype=0 (blue) bond extends in the 120 degree direction, bondtype=1 (red) one in the 60 degree direction,
and bondtype=2 (green) one in the 0 degree direction. (d) Third nearest neighbor bonds. bondtype=0 (blue)
bond extends in the -30 degree direction, bondtype=1 (red) one in the -150 degree direction, and bondtype=2
(green) one in the 90 degree direction.

5.2. Input file for tenes_simple 27

TeNeS Documentation, Release 1.0.0

Kagome lattice

In a kagome lattice type = "kagome lattice", units consisting of three sites of coordinates (0, 0), (1, 0), and
(1/2,

√
3/2) are arranged with L units in the (2, 0) direction and W units in the (1,

√
3) direction. As a concrete

example, Fig. 5.4 (a) shows the structure for L=3, W=3. In addition, the definitions of the first, second and third
nearest neighbor bonds are shown in Fig. 5.4 (b), (c), and (d), respectively. The blue and the red lines represent bonds
of bondtype = 0, and 1, respectively.

bondtype = 0
bondtype = 1

bondtype = 0
bondtype = 1

(a) (b)

(c)

(d)

Fig. 5.4: Kagome lattice. (a) Site structure with L=3, W=3. The dashed circle denotes one unit. (b) Nearest neighbor
bonds. bondtype=0 (blue) bonds form upper triangle and bondtype=1 (red) bonds form lowertriangle. (c)
Second nearest neighbor bonds. (d) Third nearest neighbor bonds. bondtype=0 (blue) bond passes over a site and
bondtype=1 (red) one does not.

5.2.3 parameter section

Parameters defined in this section is not used in tenes_simple but they are copied to the input file of tenes_std.

Set various parameters that appear in the calculation, such as the number of updates. This section has five subsections:
general, simple_update, full_update, ctm, random.

Imaginary-time step 𝜏 for simple update parameter.simple_update.tau and that for full update
parameter.full_update.tau are used only in standard mode tenes_std, not used in tenes.

28 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

parameter.general

General parameters for tenes.

Name Description Type Default
is_real Whether to limit all tensors to real valued ones Boolean false
iszero_tol Absolute cutoff value for reading operators Real 0.0
measure Whether to calculate and save observables Boolean true
output Directory for saving result such as physical

quantities
String “output”

tensor_save Directory for saving optimized tensors String “”
tensor_load Directory for loading initial tensors String “”

• is_real

– When set to true, the type of elements of the tensor becomes real.

– If one complex operator is defined at least, calculation will end in errors before starting.

• iszero_tol

– When the absolute value of operator elements loaded is less than iszero_tol, it is regarded as zero

• meaure

– When set to false, the stages for measuring and saving observables will be skipped

– Elapsed time time.dat is always saved

• output

– Save numerical results such as physical quantities to files in this directory

– Empty means "." (current directory)

• tensor_save

– Save optimized tensors to files in this directory

– If empty no tensors will be saved

• tensor_load

– Read initial tensors from files in this directory

– If empty no tensors will be loaded

parameter.simple_update

Parameters in the simple update procedure.

Name Description Type Default
tau Imaginary time step 𝜏 in imaginary time

evolution operator
Real 0.01

num_step Number of simple updates Integer 0
lambda_cutoff cutoff of the mean field to be considered

zero in the simple update
Real 1e-12

5.2. Input file for tenes_simple 29

TeNeS Documentation, Release 1.0.0

parameter.full_update

Parameters in the full update procedure.

Name Description Type Default
tau Imaginary time step 𝜏 in imaginary time

evolution operator
Real 0.01

num_step Number of full updates Integer 0
env_cutoff Cutoff of singular values to be consid-

ered as zero when computing environ-
ment through full updates

Real 1e-12

inverse_precision Cutoff of singular values to be consid-
ered as zero when computing the pseu-
doinverse matrix with full update

Real 1e-12

convergence_epsilon Convergence criteria for truncation opti-
mization with full update

Real 1e-6

iteration_max Maximum iteration number for trunca-
tion optimization on full updates

Integer 100

gauge_fix Whether the tensor gauge is fixed Boolean true
fastfullupdate Whether the fast full update is adopted Boolean true

parameter.ctm

Parameters for corner transfer matrices, CTM.

Name Description Type Default
dimension Bond Dimension of CTM 𝜒 Integer 4
projector_cutoff Cutoff of singular values to be consid-

ered as zero when computing CTM pro-
jectors

Real 1e-12

convergence_epsilon CTM convergence criteria Real 1e-6
iteration_max Maximum iteration number of conver-

gence for CTM
Integer 100

projector_corner Whether to use only the 1/4 corner tensor
in the CTM projector calculation

Boolean true

use_rsvd Whether to replace SVD with random
SVD

Boolean false

rsvd_oversampling_factor Ratio of the number of the oversampled
elements to that of the obtained elements
in random SVD method

Real 2.0

For Tensor renomalization group approach using random SVD, please see the following reference, S. Morita, R.
Igarashi, H.-H. Zhao, and N. Kawashima, Phys. Rev. E 97, 033310 (2018) .

30 Chapter 5. File format

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.033310

TeNeS Documentation, Release 1.0.0

parameter.random

Parameters for random number generators.

Name Description Type Default
seed Seed of the pseudo-random number gen-

erator used to initialize the tensor
Integer 11

Each MPI process has the own seed as seed plus the process ID (MPI rank).

Example

[parameter]
[parameter.general]
is_real = true
[parameter.simple_update]
num_step = 100
tau = 0.01
[parameter.full_update]
num_step = 0 # No full update
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 9 # CHI

5.2.4 correlation section

For tenes_simple , correlation functions 𝐶 = ⟨𝐴(0)𝐵(𝑟)⟩ are not calculated by default. For calculating cor-
relation functions, they have to be specified in the same file format as the input file of tenes. For details, See
correlation section Input file for tenes.

5.3 Input file for tenes_std

• File format: TOML format

• This file has 5 sections: parameter, tensor, hamiltonian, observable, correlation

– The four sections other than hamiltonian are identical to the tenes input file format, with the follow-
ing exceptions, and are copied to the tenes input file.

– By setting a real number for parameter.simple_update.tau and parameter.
full_update.tau, the imaginary time step for the imaginary time evolution operator can be
specified.

5.3. Input file for tenes_std 31

https://qiita.com/minoritea/items/c0de47b8beb813c655d4

TeNeS Documentation, Release 1.0.0

5.3.1 parameter section

Set various parameters that appear in the calculation, such as the number of updates. This section has five subsections:
general, simple_update, full_update, ctm, random.

Imaginary-time step 𝜏 for simple update parameter.simple_update.tau and that for full update
parameter.full_update.tau are used only in standard mode tenes_std, not used in tenes.

parameter.general

General parameters for tenes.

Name Description Type Default
is_real Whether to limit all tensors to real valued ones Boolean false
iszero_tol Absolute cutoff value for reading operators Real 0.0
measure Whether to calculate and save observables Boolean true
output Directory for saving result such as physical

quantities
String “output”

tensor_save Directory for saving optimized tensors String “”
tensor_load Directory for loading initial tensors String “”

• is_real

– When set to true, the type of elements of the tensor becomes real.

– If one complex operator is defined at least, calculation will end in errors before starting.

• iszero_tol

– When the absolute value of operator elements loaded is less than iszero_tol, it is regarded as zero

• meaure

– When set to false, the stages for measuring and saving observables will be skipped

– Elapsed time time.dat is always saved

• output

– Save numerical results such as physical quantities to files in this directory

– Empty means "." (current directory)

• tensor_save

– Save optimized tensors to files in this directory

– If empty no tensors will be saved

• tensor_load

– Read initial tensors from files in this directory

– If empty no tensors will be loaded

32 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

parameter.simple_update

Parameters in the simple update procedure.

Name Description Type Default
tau Imaginary time step 𝜏 in imaginary time

evolution operator
Real 0.01

num_step Number of simple updates Integer 0
lambda_cutoff cutoff of the mean field to be considered

zero in the simple update
Real 1e-12

parameter.full_update

Parameters in the full update procedure.

Name Description Type Default
tau Imaginary time step 𝜏 in imaginary time

evolution operator
Real 0.01

num_step Number of full updates Integer 0
env_cutoff Cutoff of singular values to be consid-

ered as zero when computing environ-
ment through full updates

Real 1e-12

inverse_precision Cutoff of singular values to be consid-
ered as zero when computing the pseu-
doinverse matrix with full update

Real 1e-12

convergence_epsilon Convergence criteria for truncation opti-
mization with full update

Real 1e-6

iteration_max Maximum iteration number for trunca-
tion optimization on full updates

Integer 100

gauge_fix Whether the tensor gauge is fixed Boolean true
fastfullupdate Whether the fast full update is adopted Boolean true

parameter.ctm

Parameters for corner transfer matrices, CTM.

Name Description Type Default
dimension Bond Dimension of CTM 𝜒 Integer 4
projector_cutoff Cutoff of singular values to be consid-

ered as zero when computing CTM pro-
jectors

Real 1e-12

convergence_epsilon CTM convergence criteria Real 1e-6
iteration_max Maximum iteration number of conver-

gence for CTM
Integer 100

projector_corner Whether to use only the 1/4 corner tensor
in the CTM projector calculation

Boolean true

use_rsvd Whether to replace SVD with random
SVD

Boolean false

rsvd_oversampling_factor Ratio of the number of the oversampled
elements to that of the obtained elements
in random SVD method

Real 2.0

5.3. Input file for tenes_std 33

TeNeS Documentation, Release 1.0.0

For Tensor renomalization group approach using random SVD, please see the following reference, S. Morita, R.
Igarashi, H.-H. Zhao, and N. Kawashima, Phys. Rev. E 97, 033310 (2018) .

parameter.random

Parameters for random number generators.

Name Description Type Default
seed Seed of the pseudo-random number gen-

erator used to initialize the tensor
Integer 11

Each MPI process has the own seed as seed plus the process ID (MPI rank).

Example

[parameter]
[parameter.general]
is_real = true
[parameter.simple_update]
num_step = 100
tau = 0.01
[parameter.full_update]
num_step = 0 # No full update
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 9 # CHI

5.3.2 tensor section

Specify the unit cell information (Information of bonds is given in the hamiltonian (tenes_std) and
evolution (tenes) sections.). Unit cell has a shape of a rectangular with the size of Lx times Ly. lattice
section has an array of subsections unitcell .

Name Description Type Default
L_sub Unit cell size Integer or a list of integer –
skew Shift value in skew boundary

condition
Integer 0

When a list of two integers is passed as L_sub, the first element gives the value of Lx and the second one does Ly. A
list of three or more elements causes an error. If L_sub is an integer, both Lx and Ly will have the same value.

Sites in a unit cell are indexed starting from 0. These are arranged in order from the x direction.

skew is the shift value in the x direction when moving one unit cell in the y direction.

34 Chapter 5. File format

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.033310

TeNeS Documentation, Release 1.0.0

0 1

2 3

x

y

4 5

Fig. 5.5: An example for L_sub = [2,3].

x

y

0 1 2

3 4 5

0 1 2

3 4 5

2

5

Fig. 5.6: An example for L_sub = [3,2], skew = 1 (ruled line is a separator for unit cell).

5.3. Input file for tenes_std 35

TeNeS Documentation, Release 1.0.0

tensor.unitcell subsection

The information of site tensors 𝑇 (𝑛)
𝑖𝑗𝑘𝑙𝛼 is specified. Here, 𝑖, 𝑗, 𝑘, 𝑙 indicate the index of the virtual bond, 𝛼 indicates the

index of the physical bond, and 𝑛 indicates the site number.

Name Description Type
index Site number Integer or a list of integer
physical_dim Dimension of physical bond for a site

tensor
Integer

virtual_dim Dimension of virtual bonds 𝐷 for a site
tensor

Integer or a list of integer

initial_state Initial tensor a list of real
noise Noise for initial tensor Real

Multiple sites can be specified at once by setting a list to index. An empty list [] means all sites.

By setting a list to virtual_dim, individual bond dimensions in four directions can be specified. The order is left
(-x), top (+y), right (+x), and bottom (-y).

An initial state of a system |Ψ⟩ is represented as the direct product state of the initial states at each site 𝑖, |Ψ𝑖⟩:

|Ψ⟩ = ⊗𝑖|Ψ𝑖⟩,

where |Ψ𝑖⟩ =
∑︀

𝛼 𝐴𝛼|𝛼⟩𝑖 is the initial state at 𝑖 site. Site tensors are initialized to realize this product state with
some noise. initial_state specifies (real) values of expansion coefficient 𝐴𝛼, which will be automatically
normalized. The tensor itself is initialized such that all elements with a virtual bond index of 0 are 𝑇0000𝛼 = 𝐴𝛼. The
other elements are independently initialized by a uniform random number of [-noise, noise). For example, in
the case of 𝑆 = 1/2 , set initial_state = [1.0, 0.0] when you want to set the initial state as the state
|Ψ𝑖⟩ = | ↑⟩ = |0⟩. When you want to set the initial state as the state |Ψ𝑖⟩ = (| ↑⟩ + | ↓⟩) /

√
2, set initial_state

= [1.0, 1.0].

When an array consisting of only zeros is passed as initil_state, all the elements of the initial tensor will be
initialized independently by uniform random value [-noise, noise) .

5.3.3 observable section

Define various settings related to physical quantity measurement. This section has two types of subsections, onesite
and twosite.

observable.onesite

Define one-body operators that indicate physical quantities defined at each site 𝑖.

Name Description type
name Operator name String
group Identification number of operators Integer
sites Site number Integer or a list of integer
dim Dimension of an operator Integer
elements Non-zero elements of an operator String

name specifies an operator name.

group specifies an identification number of one-site operators.

36 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

sites specifies a site number where an operater acts on. By using a list, the operators can be defined on the multiple
sites at the same time. An empty list [] means all sites.

dim specifies a dimension of an operator.

elements is a string specifying the non-zero element of an operator. One element is specified by one line consisting
of two integers and two floating-point numbers separated by spaces.

• The first two integers are the state numbers before and after the act of the operator, respectively.

• The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.

Example

As an example, the case of 𝑆𝑧 operator for S=1/2

𝑆𝑧 =

(︂
0.5 0.0
0.0 −0.5

)︂
is explained.

First, set the name to name = "Sz" and the identification number to group = 0.

Next, if the same operator is used at all sites, set sites = []. Otherwise, for example, if there are sites with
different spin length 𝑆, specify a specific site number such as sites = [0,1].

The dimension of the operator is dim = 2, because it is the size of the matrix shown above.

Finally, the operator element is defined. When we label two basis on site as | ↑⟩ = |0⟩ and | ↓⟩ = |1⟩, non-zero
elements of 𝑆𝑧 are represented as

elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

As a result, 𝑆𝑧 operator for S=1/2 is defined as follows:

[[observable.onesite]]
name = "Sz"
group = 0
sites = []
dim = 2
elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

observable.twosite

Define two-body operators that indicate physical quantities defined on two sites.

5.3. Input file for tenes_std 37

TeNeS Documentation, Release 1.0.0

Name Description Type
name Operator name String
group Identification number of operators Integer
bonds Bond String
dim Dimension of an operator Integer
elements Non-zero elements of an operator String
ops Index of onesite operators A list of integer

name specifies an operator name.

group specifies an identification number of two sites operators.

bonds specifies a string representing the set of site pairs on which the operator acts. One line consisting of three
integers means one site pair.

• The first integer is the number of the source site.

• The last two integers are the coordinates (dx, dy) of the other site (target site) from the source site.

– Both dx and dy must be in the range −3 ≤ 𝑑𝑥 ≤ 3.

dim specifies a dimension of an operator. In other words, the number of possible states of the site where the operator
acts on. In the case of interaction between two 𝑆 = 1/2 spins, for example, dim = [2, 2] .

elements is a string specifying the non-zero element of an operator. One element consists of one line consisting of
four integers and two floating-point numbers separated by spaces.

• The first two integers are the status numbers of the source site and target site before the operator acts on.

• The next two integers show the status numbers of the source site and target site after the operator acts on.

• The last two floats indicate the real and imaginary parts of the elements of the operator.

Using ops, a two-body operator can be defined as a direct product of the one-body operators defined in
observable.onesite. For example, if 𝑆𝑧 is defined as group = 0 in observable.onesite, 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 can

be expressed as ops = [0,0].

If both elements and ops are defined, the process will end in error.

Example

As an example, for the calculation of the energy of the bond Hamiltonian for S=1/2 Heisenberg model on square lattice
at Lsub=[2,2] , the way to define two site operators (equal to the Hamiltonian)

ℋ𝑖𝑗 = 𝑆𝑧
𝑖 𝑆

𝑧
𝑗 +

1

2

[︀
𝑆+
𝑖 𝑆−

𝑗 + 𝑆−
𝑖 𝑆+

𝑗

]︀
is explained below.

First, the name and identification number is set as name = "hamiltonian" and group = 0. dim = [2,2]
because the state of each site is a superposition of the two states | ↑⟩ and | ↓⟩.

Next, let’s define the bonds. In this case, site indecies are given as shown in bond_22 . The bond connecting 0 and
1 is represented as 0 1 0 because 1 is located at (1,0) from 0. Similarly, The bond connecting 1 and 3 is represented
as 1 0 1 because 3 is located at (0,1) from 1.

Finally, how to define the elements of the operator is explained. First, the basis of the site is needed to be la-
beled. Here, we label | ↑⟩ as 0 and | ↓⟩ as 1. Using this basis and label number, for example, one of diagonal
elements ⟨↑𝑖↑𝑗 |ℋ𝑖𝑗 | ↑𝑖↑𝑗⟩ = 1/4 is specified by 0 0 0 0 0.25 0.0. Likewise, one of off-diagonal elements
⟨↑𝑖↓𝑗 |ℋ𝑖𝑗 | ↓𝑖↑𝑗⟩ = 1/2 is specified by 1 0 0 1 0.5 0.0.

38 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

0 1

2 3

x

y

Fig. 5.7: Site indecies of the S=1/2 Heisenberg model on square lattice at Lsub=[2,2] .

As a result, the Heisenberg Hamiltonian for S=1/2 is defined as follows:

[[observable.twosite]]
name = "hamiltonian"
group = 0
dim = [2, 2]
bonds = """
0 0 1
0 1 0
1 0 1
1 1 0
2 0 1
2 1 0
3 0 1
3 1 0
"""
elements = """
0 0 0 0 0.25 0.0
1 0 1 0 -0.25 0.0
0 1 1 0 0.5 0.0
1 0 0 1 0.5 0.0
0 1 0 1 -0.25 0.0
1 1 1 1 0.25 0.0
"""

5.3.4 hamiltonian section

Let the whole Hamiltonian be the sum of the bond Hamiltonian (two-site Hamiltonian).

ℋ =
∑︁
𝑖,𝑗

ℋ𝑖𝑗

In hamiltonian section, each two-site Hamiltonian is defined. The format is similar to that of the two-site operator
specified in observable.twosite.

Name Description Type
bonds Bond String
dim Dimension of an operator A list of integer
elements Non-zero elements of an operator String

bonds specifies a string representing the set of site pairs on which the operator acts. One line consisting of three
integers means one site pair.

5.3. Input file for tenes_std 39

TeNeS Documentation, Release 1.0.0

• The first integer is the number of the source site.

• The last two integers are the coordinates (dx, dy) of the destination site (target) from the source site.

dim specifies a dimension of an operator. In other words, the number of possible states of the site where the operator
acts on. In the case of interaction between two 𝑆 = 1/2 spin, for example, dim = [2,2] .

elements is a string specifying the non-zero element of an operator. One element consists of one line consisting of
four integers and two floating-point numbers separated by spaces. The first two are the status numbers of the source
site and target site before the operator acts on. The next two show the status numbers of the source site and target site
after the operator acts on. The last two indicate the real and imaginary parts of the elements of the operator.

5.3.5 correlation section

In this section, the parameters about the site-site correlation function 𝐶 = ⟨𝐴(𝑟0)𝐵(𝑟0 + 𝑟)⟩ is specified. If you omit
this section, no correlation functions will be calculated.

Coordinates 𝑟, 𝑟0 measured in the system of square lattice TNS. For example, the coordinate of the right neighbor
tensor is 𝑟 = (1, 0) and that of the top neighbor one is 𝑟 = (0, 1). TeNeS calculates the correlation functions along
the positive direction of 𝑥 and 𝑦 axis, that is,

𝑟 = (0, 0), (1, 0), (2, 0), . . . , (𝑟max, 0), (0, 1), (0, 2), . . . , (0, 𝑟max)

The coordinate of each site of the unitcell is used as the center coordinate, 𝑟0.

Name Description Type
r_max Maximum distance 𝑟 of the correlation function Integer
operators Indices of operators A and B to be measured A list of integer

The operators defined in the observable.onesite section are used.

Example

For example, if 𝑆𝑧 is defined as 0th operator and 𝑆𝑥 is defined as 1st one, then 𝑆𝑧(0)𝑆𝑧(𝑟), 𝑆𝑧(0)𝑆𝑥(𝑟), 𝑆𝑥(0)𝑆𝑥(𝑟)
for 0 ≤ 𝑟 ≤ 5 are measured by the following definition:

[correlation]
r_max = 5
operators = [[0,0], [0,1], [1,1]]

5.4 Input file for tenes

• File format is TOML format.

• The input file has five sections: parameter, tensor, evolution, observable, correlation.

40 Chapter 5. File format

https://github.com/toml-lang/toml/blob/master/versions/ja/toml-v0.5.0.md

TeNeS Documentation, Release 1.0.0

5.4.1 parameter section

Set various parameters that appear in the calculation, such as the number of updates. This section has five subsections:
general, simple_update, full_update, ctm, random.

Imaginary-time step 𝜏 for simple update parameter.simple_update.tau and that for full update
parameter.full_update.tau are used only in standard mode tenes_std, not used in tenes.

parameter.general

General parameters for tenes.

Name Description Type Default
is_real Whether to limit all tensors to real valued ones Boolean false
iszero_tol Absolute cutoff value for reading operators Real 0.0
measure Whether to calculate and save observables Boolean true
output Directory for saving result such as physical

quantities
String “output”

tensor_save Directory for saving optimized tensors String “”
tensor_load Directory for loading initial tensors String “”

• is_real

– When set to true, the type of elements of the tensor becomes real.

– If one complex operator is defined at least, calculation will end in errors before starting.

• iszero_tol

– When the absolute value of operator elements loaded is less than iszero_tol, it is regarded as zero

• meaure

– When set to false, the stages for measuring and saving observables will be skipped

– Elapsed time time.dat is always saved

• output

– Save numerical results such as physical quantities to files in this directory

– Empty means "." (current directory)

• tensor_save

– Save optimized tensors to files in this directory

– If empty no tensors will be saved

• tensor_load

– Read initial tensors from files in this directory

– If empty no tensors will be loaded

5.4. Input file for tenes 41

TeNeS Documentation, Release 1.0.0

parameter.simple_update

Parameters in the simple update procedure.

Name Description Type Default
tau Imaginary time step 𝜏 in imaginary time

evolution operator
Real 0.01

num_step Number of simple updates Integer 0
lambda_cutoff cutoff of the mean field to be considered

zero in the simple update
Real 1e-12

parameter.full_update

Parameters in the full update procedure.

Name Description Type Default
tau Imaginary time step 𝜏 in imaginary time

evolution operator
Real 0.01

num_step Number of full updates Integer 0
env_cutoff Cutoff of singular values to be consid-

ered as zero when computing environ-
ment through full updates

Real 1e-12

inverse_precision Cutoff of singular values to be consid-
ered as zero when computing the pseu-
doinverse matrix with full update

Real 1e-12

convergence_epsilon Convergence criteria for truncation opti-
mization with full update

Real 1e-6

iteration_max Maximum iteration number for trunca-
tion optimization on full updates

Integer 100

gauge_fix Whether the tensor gauge is fixed Boolean true
fastfullupdate Whether the fast full update is adopted Boolean true

parameter.ctm

Parameters for corner transfer matrices, CTM.

Name Description Type Default
dimension Bond Dimension of CTM 𝜒 Integer 4
projector_cutoff Cutoff of singular values to be consid-

ered as zero when computing CTM pro-
jectors

Real 1e-12

convergence_epsilon CTM convergence criteria Real 1e-6
iteration_max Maximum iteration number of conver-

gence for CTM
Integer 100

projector_corner Whether to use only the 1/4 corner tensor
in the CTM projector calculation

Boolean true

use_rsvd Whether to replace SVD with random
SVD

Boolean false

rsvd_oversampling_factor Ratio of the number of the oversampled
elements to that of the obtained elements
in random SVD method

Real 2.0

42 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

For Tensor renomalization group approach using random SVD, please see the following reference, S. Morita, R.
Igarashi, H.-H. Zhao, and N. Kawashima, Phys. Rev. E 97, 033310 (2018) .

parameter.random

Parameters for random number generators.

Name Description Type Default
seed Seed of the pseudo-random number gen-

erator used to initialize the tensor
Integer 11

Each MPI process has the own seed as seed plus the process ID (MPI rank).

Example

[parameter]
[parameter.general]
is_real = true
[parameter.simple_update]
num_step = 100
tau = 0.01
[parameter.full_update]
num_step = 0 # No full update
tau = 0.01
[parameter.ctm]
iteration_max = 10
dimension = 9 # CHI

5.4.2 tensor section

Specify the unit cell information (Information of bonds is given in the hamiltonian (tenes_std) and
evolution (tenes) sections.). Unit cell has a shape of a rectangular with the size of Lx times Ly. lattice
section has an array of subsections unitcell .

Name Description Type Default
L_sub Unit cell size Integer or a list of integer –
skew Shift value in skew boundary

condition
Integer 0

When a list of two integers is passed as L_sub, the first element gives the value of Lx and the second one does Ly. A
list of three or more elements causes an error. If L_sub is an integer, both Lx and Ly will have the same value.

Sites in a unit cell are indexed starting from 0. These are arranged in order from the x direction.

skew is the shift value in the x direction when moving one unit cell in the y direction.

5.4. Input file for tenes 43

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.033310

TeNeS Documentation, Release 1.0.0

0 1

2 3

x

y

4 5

Fig. 5.8: An example for L_sub = [2,3].

x

y

0 1 2

3 4 5

0 1 2

3 4 5

2

5

Fig. 5.9: An example for L_sub = [3,2], skew = 1 (ruled line is a separator for unit cell).

44 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

tensor.unitcell subsection

The information of site tensors 𝑇 (𝑛)
𝑖𝑗𝑘𝑙𝛼 is specified. Here, 𝑖, 𝑗, 𝑘, 𝑙 indicate the index of the virtual bond, 𝛼 indicates the

index of the physical bond, and 𝑛 indicates the site number.

Name Description Type
index Site number Integer or a list of integer
physical_dim Dimension of physical bond for a site

tensor
Integer

virtual_dim Dimension of virtual bonds 𝐷 for a site
tensor

Integer or a list of integer

initial_state Initial tensor a list of real
noise Noise for initial tensor Real

Multiple sites can be specified at once by setting a list to index. An empty list [] means all sites.

By setting a list to virtual_dim, individual bond dimensions in four directions can be specified. The order is left
(-x), top (+y), right (+x), and bottom (-y).

An initial state of a system |Ψ⟩ is represented as the direct product state of the initial states at each site 𝑖, |Ψ𝑖⟩:

|Ψ⟩ = ⊗𝑖|Ψ𝑖⟩,

where |Ψ𝑖⟩ =
∑︀

𝛼 𝐴𝛼|𝛼⟩𝑖 is the initial state at 𝑖 site. Site tensors are initialized to realize this product state with
some noise. initial_state specifies (real) values of expansion coefficient 𝐴𝛼, which will be automatically
normalized. The tensor itself is initialized such that all elements with a virtual bond index of 0 are 𝑇0000𝛼 = 𝐴𝛼. The
other elements are independently initialized by a uniform random number of [-noise, noise). For example, in
the case of 𝑆 = 1/2 , set initial_state = [1.0, 0.0] when you want to set the initial state as the state
|Ψ𝑖⟩ = | ↑⟩ = |0⟩. When you want to set the initial state as the state |Ψ𝑖⟩ = (| ↑⟩ + | ↓⟩) /

√
2, set initial_state

= [1.0, 1.0].

When an array consisting of only zeros is passed as initil_state, all the elements of the initial tensor will be
initialized independently by uniform random value [-noise, noise) .

5.4.3 observable section

Define various settings related to physical quantity measurement. This section has two types of subsections, onesite
and twosite.

observable.onesite

Define one-body operators that indicate physical quantities defined at each site 𝑖.

Name Description type
name Operator name String
group Identification number of operators Integer
sites Site number Integer or a list of integer
dim Dimension of an operator Integer
elements Non-zero elements of an operator String

name specifies an operator name.

group specifies an identification number of one-site operators.

5.4. Input file for tenes 45

TeNeS Documentation, Release 1.0.0

sites specifies a site number where an operater acts on. By using a list, the operators can be defined on the multiple
sites at the same time. An empty list [] means all sites.

dim specifies a dimension of an operator.

elements is a string specifying the non-zero element of an operator. One element is specified by one line consisting
of two integers and two floating-point numbers separated by spaces.

• The first two integers are the state numbers before and after the act of the operator, respectively.

• The latter two floats indicate the real and imaginary parts of the elements of the operator, respectively.

Example

As an example, the case of 𝑆𝑧 operator for S=1/2

𝑆𝑧 =

(︂
0.5 0.0
0.0 −0.5

)︂
is explained.

First, set the name to name = "Sz" and the identification number to group = 0.

Next, if the same operator is used at all sites, set sites = []. Otherwise, for example, if there are sites with
different spin length 𝑆, specify a specific site number such as sites = [0,1].

The dimension of the operator is dim = 2, because it is the size of the matrix shown above.

Finally, the operator element is defined. When we label two basis on site as | ↑⟩ = |0⟩ and | ↓⟩ = |1⟩, non-zero
elements of 𝑆𝑧 are represented as

elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

As a result, 𝑆𝑧 operator for S=1/2 is defined as follows:

[[observable.onesite]]
name = "Sz"
group = 0
sites = []
dim = 2
elements = """
0 0 0.5 0.0
1 1 -0.5 0.0
"""

observable.twosite

Define two-body operators that indicate physical quantities defined on two sites.

46 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

Name Description Type
name Operator name String
group Identification number of operators Integer
bonds Bond String
dim Dimension of an operator Integer
elements Non-zero elements of an operator String
ops Index of onesite operators A list of integer

name specifies an operator name.

group specifies an identification number of two sites operators.

bonds specifies a string representing the set of site pairs on which the operator acts. One line consisting of three
integers means one site pair.

• The first integer is the number of the source site.

• The last two integers are the coordinates (dx, dy) of the other site (target site) from the source site.

– Both dx and dy must be in the range −3 ≤ 𝑑𝑥 ≤ 3.

dim specifies a dimension of an operator. In other words, the number of possible states of the site where the operator
acts on. In the case of interaction between two 𝑆 = 1/2 spins, for example, dim = [2, 2] .

elements is a string specifying the non-zero element of an operator. One element consists of one line consisting of
four integers and two floating-point numbers separated by spaces.

• The first two integers are the status numbers of the source site and target site before the operator acts on.

• The next two integers show the status numbers of the source site and target site after the operator acts on.

• The last two floats indicate the real and imaginary parts of the elements of the operator.

Using ops, a two-body operator can be defined as a direct product of the one-body operators defined in
observable.onesite. For example, if 𝑆𝑧 is defined as group = 0 in observable.onesite, 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 can

be expressed as ops = [0,0].

If both elements and ops are defined, the process will end in error.

Example

As an example, for the calculation of the energy of the bond Hamiltonian for S=1/2 Heisenberg model on square lattice
at Lsub=[2,2] , the way to define two site operators (equal to the Hamiltonian)

ℋ𝑖𝑗 = 𝑆𝑧
𝑖 𝑆

𝑧
𝑗 +

1

2

[︀
𝑆+
𝑖 𝑆−

𝑗 + 𝑆−
𝑖 𝑆+

𝑗

]︀
is explained below.

First, the name and identification number is set as name = "hamiltonian" and group = 0. dim = [2,2]
because the state of each site is a superposition of the two states | ↑⟩ and | ↓⟩.

Next, let’s define the bonds. In this case, site indecies are given as shown in bond_22 . The bond connecting 0 and
1 is represented as 0 1 0 because 1 is located at (1,0) from 0. Similarly, The bond connecting 1 and 3 is represented
as 1 0 1 because 3 is located at (0,1) from 1.

Finally, how to define the elements of the operator is explained. First, the basis of the site is needed to be la-
beled. Here, we label | ↑⟩ as 0 and | ↓⟩ as 1. Using this basis and label number, for example, one of diagonal
elements ⟨↑𝑖↑𝑗 |ℋ𝑖𝑗 | ↑𝑖↑𝑗⟩ = 1/4 is specified by 0 0 0 0 0.25 0.0. Likewise, one of off-diagonal elements
⟨↑𝑖↓𝑗 |ℋ𝑖𝑗 | ↓𝑖↑𝑗⟩ = 1/2 is specified by 1 0 0 1 0.5 0.0.

5.4. Input file for tenes 47

TeNeS Documentation, Release 1.0.0

0 1

2 3

x

y

Fig. 5.10: Site indecies of the S=1/2 Heisenberg model on square lattice at Lsub=[2,2] .

As a result, the Heisenberg Hamiltonian for S=1/2 is defined as follows:

[[observable.twosite]]
name = "hamiltonian"
group = 0
dim = [2, 2]
bonds = """
0 0 1
0 1 0
1 0 1
1 1 0
2 0 1
2 1 0
3 0 1
3 1 0
"""
elements = """
0 0 0 0 0.25 0.0
1 0 1 0 -0.25 0.0
0 1 1 0 0.5 0.0
1 0 0 1 0.5 0.0
0 1 0 1 -0.25 0.0
1 1 1 1 0.25 0.0
"""

5.4.4 evolution section

Specify the imaginary time evolution opetrators used in simple and full updates. This section has two subsections:
simple and full.

Name Description Type
source_site Index of source site Integer
source_leg Direction from source site to target site Integer
dimensions Dimension of a tensor of imaginary time evolution

operator
A list of integer

elements Non-zero elements of a tensor of imaginary time
evolution operator

String

source_leg is specified as an integer from 0 to 3. Defined as 0: -x, 1: + y, 2: + x, 3: -y in
the clockwise order from the -x direction.

48 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

dimensions is different from dim in observable section, so you need to specify the dimensions of all legs. The
order of the legs is source_initial, target_initial, source_final, target_final, just like
elements.

Example

[evolution]
[[evolution.simple]]
source_site = 0
source_leg = 2
dimensions = [2, 2, 2, 2]
elements = """
0 0 0 0 0.9975031223974601 0.0
1 0 1 0 1.0025156589209967 0.0
0 1 1 0 -0.005012536523536871 0.0
1 0 0 1 -0.005012536523536871 0.0
0 1 0 1 1.0025156589209967 0.0
1 1 1 1 0.9975031223974601 0.0
"""

5.4.5 correlation section

In this section, the parameters about the site-site correlation function 𝐶 = ⟨𝐴(𝑟0)𝐵(𝑟0 + 𝑟)⟩ is specified. If you omit
this section, no correlation functions will be calculated.

Coordinates 𝑟, 𝑟0 measured in the system of square lattice TNS. For example, the coordinate of the right neighbor
tensor is 𝑟 = (1, 0) and that of the top neighbor one is 𝑟 = (0, 1). TeNeS calculates the correlation functions along
the positive direction of 𝑥 and 𝑦 axis, that is,

𝑟 = (0, 0), (1, 0), (2, 0), . . . , (𝑟max, 0), (0, 1), (0, 2), . . . , (0, 𝑟max)

The coordinate of each site of the unitcell is used as the center coordinate, 𝑟0.

Name Description Type
r_max Maximum distance 𝑟 of the correlation function Integer
operators Indices of operators A and B to be measured A list of integer

The operators defined in the observable.onesite section are used.

Example

For example, if 𝑆𝑧 is defined as 0th operator and 𝑆𝑥 is defined as 1st one, then 𝑆𝑧(0)𝑆𝑧(𝑟), 𝑆𝑧(0)𝑆𝑥(𝑟), 𝑆𝑥(0)𝑆𝑥(𝑟)
for 0 ≤ 𝑟 ≤ 5 are measured by the following definition:

[correlation]
r_max = 5
operators = [[0,0], [0,1], [1,1]]

5.4. Input file for tenes 49

TeNeS Documentation, Release 1.0.0

5.5 Output files

Output files are generated in the output directry.

5.5.1 parameters.dat

Paramters in the parameter and lattice sections defined in the input file are outputted.

5.5.2 energy.dat

The energy of each site is output.

5.5.3 site_obs.dat

• The expected values of the site operator are outputted.

• Each row consists of four columns.

1. Index of the operator

2. Index of the sites

3. Real part of the expected value

4. Imaginary part of the expected value

Example

$1: op_index
$2: site_index
$3: real
$4: imag

0 0 1.92549465249573365e-02 0.00000000000000000e+00
0 1 -1.92620814130195529e-02 0.00000000000000000e+00
0 2 -1.95243093055922252e-02 0.00000000000000000e+00
0 3 1.91619477632061150e-02 0.00000000000000000e+00
1 0 4.07206063348768799e-01 0.00000000000000000e+00
1 1 -4.07243511737157671e-01 0.00000000000000000e+00
1 2 -4.07255967738734126e-01 0.00000000000000000e+00
1 3 4.07308918791554009e-01 0.00000000000000000e+00

5.5.4 neighbor_obs.dat

• Nearest neighbor correlations for site operations are outputted.

• Each row consists of five columns.

1. Index of the operator

2. Index of the sites

3. Index of the sites

50 Chapter 5. File format

TeNeS Documentation, Release 1.0.0

4. Real part of the expected value

5. Imaginary part of the expected value

$1: op_index
$2: source_site
$3: target_site
$4: real
$5: imag

0 0 1 -7.05927615064968900e-02 0.00000000000000000e+00
0 0 2 -7.27068456430051274e-02 0.00000000000000000e+00
0 1 0 -7.13284385957392297e-02 0.00000000000000000e+00
0 1 3 -7.19523349256113581e-02 0.00000000000000000e+00
0 2 3 -7.12610364895483045e-02 0.00000000000000000e+00
0 2 0 -7.19731507561011952e-02 0.00000000000000000e+00
0 3 2 -7.05633558230210067e-02 0.00000000000000000e+00
0 3 1 -7.26803750807340498e-02 0.00000000000000000e+00
1 0 1 -1.85942869237103348e-01 0.00000000000000000e+00
1 0 2 -1.87164731677545187e-01 0.00000000000000000e+00
1 1 0 -1.86360382550076586e-01 0.00000000000000000e+00
1 1 3 -1.86768451086366694e-01 0.00000000000000000e+00
1 2 3 -1.86384181909805935e-01 0.00000000000000000e+00
1 2 0 -1.86747576732693515e-01 0.00000000000000000e+00
1 3 2 -1.85975089525013598e-01 0.00000000000000000e+00
1 3 1 -1.87196522916879049e-01 0.00000000000000000e+00

5.5.5 correlation.dat

• Correlation functions are outputted.

• Each row consists of eight columns.

1. Index of the left operator

2. Site index of the left operator

3. Index of the right operator

4. Site index of the right operator

5. Unit cell offset of the right operator (x)

6. Unit cell offset of the right operator (y)

7. Real part of the expected value

8. Imaginary part of the expected value

Example

$1: left_op
$2: left_site
$3: right_op
$4: right_site
$5: offset_x
$6: offset_y
$7: real

(continues on next page)

5.5. Output files 51

TeNeS Documentation, Release 1.0.0

(continued from previous page)

$8: imag

0 0 0 1 0 0 -7.05927615064967928e-02 0.00000000000000000e+00
0 0 0 0 1 0 1.19668843226761017e-02 0.00000000000000000e+00
0 0 0 1 1 0 -2.43086229320005863e-03 0.00000000000000000e+00
0 0 0 0 2 0 7.42729194528496308e-04 0.00000000000000000e+00
0 0 0 1 2 0 -4.38794819416885419e-04 0.00000000000000000e+00
0 0 0 2 0 0 -7.27068456430051135e-02 0.00000000000000000e+00
0 0 0 0 0 1 1.23339845746621279e-02 0.00000000000000000e+00
0 0 0 2 0 1 -2.50111186244407349e-03 0.00000000000000000e+00
0 0 0 0 0 2 7.54607806587391516e-04 0.00000000000000000e+00
0 0 0 2 0 2 -4.47734559969679546e-04 0.00000000000000000e+00
1 0 1 1 0 0 -1.85942869237103237e-01 0.00000000000000000e+00
...
1 3 1 1 0 3 -1.65874245891461547e-01 0.00000000000000000e+00

5.5.6 time.dat

The calculation time is outputted.

52 Chapter 5. File format

CHAPTER

SIX

ALGORITHM

6.1 Tensor Network States

Tensor network states (TNS) are variational wavefunctions represented as products of small tensors [TNS]. For exam-
ple, in the case of 𝑆 = 1/2 spin system with 𝑁 sites, a wavefunction can be represented by using the product state
basis as

|Ψ⟩ =
∑︁

𝑠𝑖±↑,↓

Ψ𝑠1,𝑠2,...,𝑠𝑁 |𝑠1, 𝑠2, . . . , 𝑠𝑁 ⟩

In a tensor network state, Ψ𝑠1,𝑠2,...,𝑠𝑁 is represented as a tensor network, e.g,

Ψ𝑠1,𝑠2,...,𝑠𝑁 = tTr
[︁
𝑇 (1)[𝑠1]𝑇 (2)[𝑠2] · · ·𝑇 (𝑁)[𝑠𝑁]

]︁
,

where tTr[. . .] represents tensor network contraction and 𝑇 (𝑖)[𝑠𝑖] is a tensor. In the case of a matrix product state
(MPS) [MPS] , 𝑇 (𝑖)[𝑠𝑖] becomes a matrix for a given 𝑠𝑖 and tTr[. . .] becomes usual matrix products as

ΨMPS
𝑠1,𝑠2,...,𝑠𝑁 = 𝑇 (1)[𝑠1]𝑇 (2)[𝑠2] · · ·𝑇 (𝑁)[𝑠𝑁],

where we assume that shapes of 𝑇 (1)[𝑠1] , 𝑇 (𝑖)[𝑠𝑖](𝑖 ̸= 1, 𝑁), and 𝑇 (𝑁)[𝑠𝑁] are 1 ×𝐷1 𝐷𝑖−1 ×𝐷𝑖 ,and 𝐷𝑁−1 × 1,
respectively. When we use TNS in order to approximate the ground state wavefunction, the accuracy is determined by
𝐷𝑖. 𝐷𝑖 is usually called as bond dimension. By using a tensor network diagram, MPS is represented as follows:

This MPS represents a wavefunction for a finite size system. Similarly, we can also consider an infinitely long MPS
to represent an infinite system. Especially, when we assume a lattice transrational symmetry, with a certain period,
we can construct an infinite MPS (iMPS) with a few independent tensors. In the case of two-site periodicity, an iMPS
looks like as

53

TeNeS Documentation, Release 1.0.0

where tensors with the same color indicate identical tensors.

In TeNeS, we consider two-dimensional infinite tensor product states (iTNS), which are natural extension of iMPS to
higher dimensions. We assume a square lattice tensor network with a translational symmetry, whose diagram is shown
as

and try to find an approximate ground state wavefunction of two-dimensional quantum many-body systems. Notice
that square lattice tensor networks can represent lattices other than the square lattice, such as the honeycomb and the
triangular lattices, by considering proper mapping.

6.2 Contraction of iTPS

In order to calculate expectation values over a TNS, ⟨Ψ|𝑂|Ψ⟩/⟨Ψ|Ψ⟩, generally we need to contract tensor networks
corresponding to ⟨Ψ|𝑂|Ψ⟩ and ⟨Ψ|Ψ⟩. For example, a tensor network corresponding to ⟨Ψ|Ψ⟩ is given by

54 Chapter 6. Algorithm

TeNeS Documentation, Release 1.0.0

which is often called as a double layered tensor network. The contraction of a double layered tensor network often
needs huge computation cost. In the case of MPS (and iMPS), fortunately, we can contract it efficiently, e.g, by
considering a transfer matrix which consists of local tensors. However, in the case of TPS (and iTPS), exact contraction
is impossible except for small finite size systems (or infinite cylinders) and we often use approximate contraction
methods. Among several efficient methods for contracting iTPS in two-dimension, TeNeS supports corner transfer
matrix renormalization group (CTMRG) method [CTMRG], which expresses an infinitely extended double layered
tensor network by using corner transfer matrices and edge tensors.

When we simplify the double layered tensor network by using a locally contracted tensor,

a tensor network diagram for the corner transfer matrix representation is given as

6.2. Contraction of iTPS 55

TeNeS Documentation, Release 1.0.0

A corner transfer matrix and an edge tensor are defined as

Corner transfer matrix Edge tensor
The accuracy of the corner transfer matrix representation is determined by the bond dimension 𝜒 of corner transfer
matrices, which is indicated as thick lines in the diagrams.

In the CTMRG algorithm, we iteratively optimise corner transfer matrices and edge tensors by absorbing local tensors
until they converges. For example, an absorbing procedure, so called left move, is described as follows:

:Projector

Left move in CTMRG

The projectors in the above diagram is calculated in several ways [CTMRG] and they reduces the degree of freedoms
to 𝜒.

When we consider iTPS with the bond dimension 𝐷 and CTMs with the bond dimension 𝜒, the leading computation
cost of CTMRG scales as 𝑂(𝜒2𝐷6) and 𝑂(𝜒3𝐷4). Notice that the bond dimension of the double layered tensor
network becomes 𝐷2 by using locally contracted tensors. Thus, typically we increase 𝜒 as 𝜒 ∝ 𝑂(𝐷2). In this setup,
the leading computation cost of CTMRG algorithm is reduced to 𝑂(𝐷10), while the memory usage scales 𝑂(𝐷8). In
order to achive the computation cost discussed above, we need to use a partial singular value decomposition (SVD)
(or the truncated SVD) technique. When we use the full SVD insted of the partial SVD, the computation cost becomes
𝑂(𝐷12).

Once we obtain the corner transfer matrices and edge tensors, we can also calculate ⟨Ψ|𝑂|Ψ⟩ efficiently. For example,
a local magnetization ⟨Ψ|𝑆𝑧

𝑖 |Ψ⟩ is represented as

,

and similarly the nearest neighbor correlation ⟨Ψ|𝑆𝑧
𝑖 𝑆

𝑧
𝑖+1|Ψ⟩ is represented as

56 Chapter 6. Algorithm

TeNeS Documentation, Release 1.0.0

,

Notice that by using the second representation, we can calculate expectation values of any two-site operators. Although
we can generalize such a diagram for any operators, the computation cost to contract the tensor network becomes huge
for larger clusters.

6.3 Optimization of iTPS

In order to use iTPS as variational wavefunctions for the ground state, we need to optimize it so that it give us the
minimum energy expectation value,

𝐸 =
⟨Ψ|ℋ|Ψ⟩
⟨Ψ|Ψ⟩

,

where ℋ represents the Hamiltonian of the target system. Among two types of popular optimization algorithms, the
imaginary evolution (ITE) and the variational optimization, we support the ITE in TeNeS. In TeNeS, we consider
approximate ITE within the iTPS ansatz:

|ΨiTPS⟩ ≃ 𝑒−𝑇ℋ|Ψ0⟩,

where |Ψ0⟩ is an arbitrary initial iTPS. If 𝑇 is sufficiently large, the left hand side, |ΨiTPS⟩, is expected to be a good
approximation of the ground state.

In TeNeS, we assume that the Hamiltonian can be represented as a sum of short range two-body interactions as

ℋ =
∑︁

{(𝑖,𝑗)}

𝐻𝑖𝑗 ,

and apply Suzuki-Trotter decomposition to the ITE operator with small time step 𝜏 :

𝑒−𝜏ℋ =
∏︁

{(𝑖,𝑗)}

𝑒−𝜏𝐻𝑖𝑗 + 𝑂(𝜏2).

We can also consider higher order Suzuki-Trotter decomposition. By using the Suzuki-Trotter decomposition form,
the ITE is represented as

𝑒−𝑇ℋ|Ψ0⟩ =

⎛⎝ ∏︁
{(𝑖,𝑗)}

𝑒−𝜏𝐻𝑖𝑗

⎞⎠𝑁𝜏

|Ψ0⟩ + 𝑂(𝜏),

6.3. Optimization of iTPS 57

TeNeS Documentation, Release 1.0.0

where 𝑁𝜏 = 𝑇/𝜏 is the number of ITEs with sufficiently small 𝜏 . In order to simulate the right hand side of the
equation, we divide

∏︀
{(𝑖,𝑗)} into several subsets. In each subset, (local) ITE operators satisfy two properties: they

commute with each other and they have the same translation symmetry with the iTPS ansatz. For example, in the case
of two-site iMPS for the one-dimensional nearest-neighbor interaction Hamiltonian, we have two subsets:

Subset 1:

Subset 2:

Then, we approximate the wavefunction after multiplication of each ITE-operator subset as an iTPS with the bond
dimension 𝐷:

|ΨiTPS
𝜏 ⟩ ≃

∏︁
{(𝑖,𝑗)∈subset𝑛}

𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩,

where
∏︀

{(𝑖,𝑗)∈subset𝑛} means the product of operators in the 𝑛th subset, and |ΨiTPS
𝜏 ⟩ is a new iTPS. By using a

diagram, it is represented as follows:

Bond dimension = DBond dimension = D

Notice that by applying 𝑒−𝜏𝐻𝑖𝑗 the bond dimension of the exact iTPS representation generally increases. In order to
continue the simulation stably, we need to truncate the bond dimension to a constant 𝐷.

Naively, efficient truncation can be done by solving the minimization problem

min

⃦⃦⃦⃦
⃦⃦|ΨiTPS

𝜏 ⟩ −
∏︁

{(𝑖,𝑗)∈subset𝑛}

𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩

⃦⃦⃦⃦
⃦⃦
2

.

However, in practice, solving this minimization problem needs huge computation cost because it is a highly nonlinear
problem due to the translational symmetry of iTPS. Thus, instead, we usually consider an alternative local problem
where we apply only a local ITE operator and try to find optimal iTPS |ΨiTPS

𝜏 ⟩ in which only a few local tensors are
modified from the original |ΨiTPS⟩. This minimization problem is written as

min
⃦⃦
|ΨiTPS

𝜏 ⟩ − 𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩
⃦⃦2

.

In the case of the nearest-neighbor interaction on the one-dimensional chain, the diagrams corresponding to this
minimization problems are

Bond dimension = DBond dimension = D

The squared norm
⃦⃦
|ΨiTPS

𝜏 ⟩ − 𝑒−𝜏𝐻𝑖𝑗 |ΨiTPS⟩
⃦⃦2

can be calculated by using, e.g., CTMRG and we can solve the
minimization problem easily [ITE]. Although this new iTPS breaks translational symmetry, we make translationally

58 Chapter 6. Algorithm

TeNeS Documentation, Release 1.0.0

symmetric iTPS by copying updated local tensors to other parts so that the obtained iTPS can be considered as an
approximated solution of the original minimization problem:

Copy Copy

This ITE approach is often called as full update. The leading computation cost of the full update come from CTMRG
and then it scales as 𝑂(𝐷10) or 𝑂(𝐷12) depending on SVD algorithms.

The simple update (or simplified update) is a cheaper version of ITE optimization. In order to avoid expensive envi-
ronment calculation by CTMRG, we consider a part of the tensor network instead to treat the whole [SimpleUpdate]
in the simple update. For example, in the case of the nearest-neighbor interaction, we consider the following local
optimization problem:

: Non-negative diagonal matrix
In this diagram, 𝜆𝑖 represents a non-negative diagonal matrix considered to be a mean field corresponding to the
neglected environment beyond the bond 𝑖. The definition of 𝜆𝑖 will be given later. This optimization problem can be
viewed as the low rank approximation of a matrix consisting of two tensors and a ITE operator, and then we can solve
it by SVD. The procedure of the simple update is given in the following diagram:

6.3. Optimization of iTPS 59

TeNeS Documentation, Release 1.0.0

SVD

Truncation to
bond-dimension D

Matrix

The singular values obtained from the SVD of the matrix is used as the mean field 𝜆 in the next step. The computation
cost of the simple update is 𝑂(𝐷5), if we use QR decomposition before we construct the matrix [QR]. Thus, it is
much cheaper that that of the full update.

Although the computation cost of the simple update is cheaper than that of the full update, it is known that the
simple update shows strong initial state dependence and it tends to overestimate the local magnetization. Thus, for
complicated problems, we need to carefully check results obtained by the simple update.

References

[TNS] R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states,
Annals. of Physics 349, 117 (2014). link; R. Orús, Tensor networks for complex quantum systems, Nature Review
Physics 1, 538 (2019). link.

[MPS] U. Schollwcök, The density-matrix renormalization group in the age of matrix product states, Annals. of
Physics 326, 96 (2011). link

[CTMRG] T. Nishino and K. Okunishi, Corner Transfer Matrix Renormalization Group Method, J. Phys. Soc. Jpn.
65, 891 (1996).; R. Orús and G. Vidal, Simulation of two-dimensional quantum systems on an infinite lattice revisited:
Corner transfer matrix for tensor contraction, Phys. Rev. B 80, 094403 (2009). link ; P. Corboz et al., Competing
States in the t-J Model: Uniform d-Wave State versus Stripe State, Phys. Rev. Lett. 113, 046402 (2014). link

[ITE] J. Jordan et al., Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions, Phys.
Rev. Lett. 101, 250602, (2008). link; R. Orús and G. Vidal, Simulation of two-dimensional quantum systems on an
infinite lattice revisited: Corner transfer matrix for tensor contraction, Phys. Rev. B 80, 094403 (2009). link

[SimpleUpdate] H. G. Jiang et al., Accurate Determination of Tensor Network State of Quantum Lattice Models in
Two Dimensions, Phys. Rev. Lett. 101, 090603 (2008). link

[QR] L. Wang et al., Monte Carlo simulation with tensor network states, Phys. Rev. B 83, 134421 (2011). link

60 Chapter 6. Algorithm

https://linkinghub.elsevier.com/retrieve/pii/S0003491614001596
https://doi.org/10.1038/s42254-019-0086-7
https://linkinghub.elsevier.com/retrieve/pii/S0003491610001752
https://doi.org/10.1103/PhysRevB.80.094403
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1103/PhysRevB.80.094403
https://doi.org/10.1103/PhysRevLett.101.090603
https://doi.org/10.1103/PhysRevB.83.134421

CHAPTER

SEVEN

ACKNOWLEDGEMENT

TeNeS was supported by MEXT as “Exploratory Challenge on Post-K computer” (Frontiers of Basic Science:
Challenging the Limits) and “Priority Issue on Post-K computer” (Creation of New Functional Devices and High-
Performance Materials to Support Next-Generation Industries). We also would also like to express our thanks for the
support of the “Project for advancement of software usability in materials science” of The Institute for Solid State
Physics, The University of Tokyo, for the development of TeNeS.

61

TeNeS Documentation, Release 1.0.0

62 Chapter 7. Acknowledgement

CHAPTER

EIGHT

CONTACTS

• Report bugs

Please report all problems and bugs on the GitHub Issues page

Follow these guidelines when reporting:

– Please specify the version of TeNeS, OS, and compiler you are using.

– If there are problems for installation, please include input / output of cmake and make, and CMake-
Cache.txt (one of the output file of cmake).

– If a problem occurs during execution, please show the input file used and obtained output.

Thank you for your cooperation.

• Others

If you have any questions about topics related to your research that are difficult to consult in public (e.g., at Issue
page on GitHub), please send an e-mail to the following address:

E-mail: tenes-dev__at__issp.u-tokyo.ac.jp (replace __at__ by @).

63

https://github.com/issp-center-dev/TeNeS/issues

	What is TeNeS ?
	Overview
	Developers
	Version information
	License
	Copyright

	Install
	Download
	Prerequisites
	Install

	Usage
	Usage of tenes_simple
	Usage of tenes_std
	Usage of tenes

	Tutorial
	Ising model with transverse magnetic field
	Magnetization process of the Heisenberg model on triangular and square lattices

	File format
	Short summary for input files of TeNeS
	Input file for tenes_simple
	Input file for tenes_std
	Input file for tenes
	Output files

	Algorithm
	Tensor Network States
	Contraction of iTPS
	Optimization of iTPS

	Acknowledgement
	Contacts

