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 - Strongly correlated electron systems (SCES) 
2. Basics of wavefunction methods 
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 - What is variational Monte Carlo (VMC) ? 
 - Conventional VMC vs mVMC 
 - Optimization method (SR method) based on 
   time-dependent variational principle 
4. Open-source software of mVMC 
 - How to get mVMC 
 - How to use mVMC [Standard & Expert mode]
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Exotic phenomena in SCES

The issue of spin frustration has long been a central subject in the study of magnetism. In

particular, the possible spin liquid on triangular lattices has been of keen interest as a novel

quantum phase of matter and has become increasingly attractive with the idea that this state is

possibly behind high-Tc superconductivity (109). However, the triangular-lattice Heisenberg

model was found to have the 120-degree-oriented Néel ground state instead of any quantum-

disordered state (54). In such a situation, however, it is found that spin states without magnetic

ordering, which should be called spin liquid, were found in the two organic Mott insulators,

k-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which reside near the Mott transition. With the

use of chemical/physical pressure and intense theoretical works, the series of experiments

showed that the spin liquid is realized in a range of anisotropy of triangular lattices and in the

intermediately correlated regime on the verge of Mott transition, not in the strongly correlated

regime; namely, the electron itinerancy in the Mott insulator is key to realizing spin liquid on

quasi-triangular lattices. How the spin liquid connects to the metallic and superconducting

phases is a problem to consider in the future.

The nature of spin liquid in the two materials is mysterious. The excitation gap in

k-(ET)2Cu2(CN)3 is controversial; specific heat points to a gapless ground state, whereas

thermal conductivity behaves as though gapped by 0.46 K. The NMR relaxation rate exhibits

a power-law temperature dependence, which is in between the two extreme behaviors. As for

EtMe3Sb[Pd(dmit)2]2, both thermodynamic measurements are consistent with gapless excita-

tions, while the NMR relaxation rate may suggest a nodal gap. The result of thermal conduc-

tivity showing a T-linear term with a long mean-free path of mm will strongly constrain

theoretical models. Appearance of anomalies at finite temperatures can be a signature of some

kind of symmetry breaking. In this sense, the 5–6 K anomaly observed in NMR, specific heat,

and thermal conductivity in k-(ET)2Cu2(CN)3 points to this possibility. Interestingly, 1 K is the

characteristic temperature in the NMR relaxation rate for both materials, whereas it is not so
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Phase diagram for the b0-Pd(dmit)2 salts. Abbreviations: FP, frustrated paramagnetic (state); AFLO, antifer-
romagnetic long-range ordered (state); CO, charge-ordered (state); QSL, quantum spin liquid (state).
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K. Kanoda and R. Kato,  
Annu. Rev. Condes. Phys. 2011  
QSL in organic solidsthe cation without the twofold symmetry (EtMe3Z

þ) shows two possible orientations with an

occupancy of 50% for each one. The dimer units stack along the aþb direction in Layer 1 and

along the a"b direction in Layer 2.

The strong dimerization and the small D value lead to an interesting electronic structure that

has never been observed in other molecular conductors including the ET salts. In the dimer unit,

each HOMO and LUMO in the monomer forms bonding and antibonding pairs with a dimer-

ization gap (Figure 10). The dimerization gap is expressed as 2jtAj, where tA is an intradimer

transfer integral (Figure 12) and depends on the strength of dimerization. Both pairs have nearly

the same tA value. A transfer integral between the HOMO and LUMO is zero, because a

difference in symmetry leads to cancellation of an overlap integral in an eclipsed overlapping

mode. In the Pd(dmit)2 salts, the dimerization gap is large enough, and the bonding LUMO pair

is located below the antibonding HOMO pair. This is HOMO-LUMO level crossing (85, 97).

The antibonding HOMO pair in [Pd(dmit)2]2
" is occupied by one unpaired electron. In a

crystal, each energy level forms an energy band, and the antibonding HOMO pair forms
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Figure 11

Crystal structure of the b0-type Pd(dmit)2 salt.
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To clarify and predict exotic phenomena in SCES 
→ Accurate numerical methods for solving low-energy effective 
models are necessary 

temperature

electron
density 0  0.1

100K

50K
superconducting
phase

antiferromagnetic 
phase

 0.2

Y. Kamihara et al, JACS (2008)

LaFeAsO

High-Tc SC in iron-based compound

β’-X[Pd(dmit)2]2



5-orbital Hubbard Hamiltonians 
obtained by ab initio calculations

T. Misawa et al., Nat. Com. 5, 5738 (2014)

Low-energy effective models
LaFeAsO EtMe3Pb[Pd(dmit)2]2
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✓Exact diagonalization (HΦ)

✓many-variable variational Monte Carlo method (mVMC)

Introduction: Our open-source software

Exact calculations for 
- Ground state (Lanczos, LOBCG) 
- Low-energy excited state (LOBCG) 
- Finite-temperature calculations (TPQ) 
- Dynamical structure factors (Laczos, shifted Krylov) 
- Real-time evolution

-Accurate and flexible wave function method. 

-Applicable to wide range of Hamiltonians 
including complicated low-energy Hamiltonians 
for real materials

Connection with  ab initio derivation of low-energy effective Hamiltonians 
cf.  RESPACK by K. Nakamura et al.

https://www.pasums.issp.u-tokyo.ac.jp/hphi/doc/presentation/

https://www.pasums.issp.u-tokyo.ac.jp/hphi/doc/presentation/


Basics of wave function methods



Model for strongly correlated electron systems 
e.g. Hubbard model

Ĥ = Ĥt + ĤU

ĤU =
X

i

n̂i"n̂i#, n̂i� = ĉ
†
i� ĉi�

{ĉ†i�, ĉj�0} = ĉ†i� ĉj�0 + ĉj�0 ĉ†i� = �i,j��,�0

{ĉ†i�, ĉ
†
j�0} = 0 ! ĉ†i� ĉ

†
i� = 0

{ĉi�, ĉj�0} = 0 ! ĉi� ĉi� = 0

Ĥt = �t

X

hi,ji,�

(ĉ†i� ĉj� + ĉ
†
j� ĉi�)

Relations of 2nd-quantized operators (these are all !)

Pauli’s principle

Electrons as waves

Electrons as particles

U: onsite Coulomb

t: hopping



Wave function = eigenvectors of Hamiltonian 
Matrix representation of Hamiltonian (ex. 2 site Hubbard model)

| ", #i = c†1"c
†
2"|0i

h", # |Ĥt| "#, 0i = h", # |(t
X

�

c
†
1�c2� + c

†
2�c1�)| "#, 0i = �t

H =

0

BB@

0 0 �t �t
0 0 t t
�t t U 0
�t t 0 U

1

CCA

| ", #i | #, "i | "#, 0i |0, "#i

Diagonalization → eigenvalues, eigenvectors  
→ Problem is completely solved (HΦ)

Real-space configuration

After some tedious calculations, 

dimension of mat. 
dH ~ 4Ns 

[Ns~132, 4132~1080]



One-body approximation

|�onei =
NeY

�,n=1

 †
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n� =
NsX
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Real-space configuration (t=0)

Plane wave (U=0)

Slater determinant

Slater determinant can describe conventional orders; 
antiferromagnetic order, charge orders, orbital orders … 
[mVMC includes codes for UHF]



Beyond one-body approximation
Slater determinant → Pfaffian wave function

Introducing many-body correlations

Pfaffian wave function 
- includes Slater wave function, 
- can describe singlet correlations 
→ superconductivity, quantum spin liquid

Correlation factors → Many-body correlations can be included 
→ Superconductivity by repulsive interactions can be described

Further improvement: power-Lanczos, backflow, multi-pfaffian … 



Basics of variational Monte Carlo

- Optimization of variational parameters             
[time-dependent variational principle] 

- Evaluation of physical quantities [MC sampling]



Variational Monte Carlo (VMC) I
Variational principle α:variational parameters

Inner product

 positive weight

Physical properties [MC sampling] 
x :real space configuration

review: C. Gros,  
Ann. Phys. 189, 53 (1989)

h |Â| i
h | i =

X

x

h |Â|xihx| i
h | i =

X

x

⇢(x)
h |Â|xi
h |xi

⇠ 1

NMC

X

MC sampling

h |Â|xi
h |xi

F. Becca & S. Sorella



Variational Monte Carlo (VMC) II

Real-space diagonal correlation factor =  
easy to calculate inner product.

correlation factor
One-body part determinant or Pfaffian

Ex. Gutzwiller factor

PG|xi = |xie�gD(x)



D. Tahara and M. Imada, JPSJ (2008) 
T. Misawa et al., CPC (2019)

Wave function of mVMC

Optimization of many variational parameters (>=10000) 
→ High-accuracy wave functions for ground states



Conventional VMC v.s. mVMC　
Conventional VMC:  
Strong constraint on wave functions [ # of parameters~10]
ex. antiferromagnetic phase  

Variational parameters = AF order parameter + etc.

Disadvantages of conventional VMC 
- Accuracy is not enough due to the strong constraint 
- Overestimating the stability of ordered phases 
-   It is difficult to treat realistic models (ab initio models)  



Conventional VMC v.s. mVMC　
Conventional VMC:  
Strong constraint on wave functions [ # of parameters~10]
ex. antiferromagnetic phase  

Variational parameters = AF order parameter + etc.
many-variable VMC (mVMC): 
flexibility of one-body part [# of parameters > 10000]

fij , FIJ:variational  
parameters

fij [ i,j real-space indices] → correlated paramagnetic state, 
symmetry breaking phase (AF etc.), SC states 

|�APi =
⇣X

i,j

fijc
†
i"c

†
j#

⌘Ne/2
|0i

|�AP+Pi =
⇣ X

i�,j⌧

Fi�,j⌧ c
†
i�c

†
j⌧

⌘Ne/2
|0i



Optimization method
α:variational parameters(General) Gradient method

SR method [S. Sorella, PRB 2001] 
Natural gradient [S.-I. Amari, Neural Comp. 1998 ]



Optimization method
α:variational parameters(General) Gradient method

Steepest decent method [slow due to redundancy]

Newton method [second derivatives are expensive]
X = I (identity matrix)

X = h (Hessian : h↵� =
@2E

@↵@�
)

SR method [S. Sorella, PRB 2001] 
Natural gradient [S.-I. Amari, Neural Comp. 1998 ]



Optimization method
α:variational parameters(General) Gradient method

Newton method [second derivatives are expensive]

Stochastic reconfiguration (SR) method [fast & stable]

X = I (identity matrix)

X = h (Hessian : h↵� =
@2E

@↵@�
)

SR method [S. Sorella, PRB 2001] 
Natural gradient [S.-I. Amari, Neural Comp. 1998 ]

Steepest decent method [slow due to redundancy]



Time-dependent variational principle
Imaginary time evolution  

SR method 
= imaginary-time evolution in restricted Hilbert space  

S: overlap matrix

SR method can be used for real-time evolution (Ido et al., PRB 2015) 
& finite-temperature calculations (Takai et al., JPSJ 2016)

(imaginary) time-dependent variational principle 
A. D. McLachlan, Mol. Phys. 8, 39 (1964)



Advantages of mVMC
- No negative-sign problem  
    positive weight ρ(x) > 0

- Easy to include many-body correlations through 
correlation factors (Gutzwiller, Jastrow, Doublon-Holon..)

- Natural extensions of mean-field calculations

- Wide applicable range [strong correlations, geometrical 
frustration, multi orbital system, any dimensions … ]

- Systematic improvement is possible (power Lanczos, 
backflow, multi Pfaffian method …)

- Not only for ground-state calculations → 
finite-temperature calculations, real-time evolution !



Applications of mVMC I

Heavy fermion systemsQuantum spin liquid

High-Tc SC
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cylindrical boundary condition studied by the DMRG method and makes the extrap-

olation to the thermodynamic limit easier. To reduce biases of the variational wave

functions, we introduce a generalized one-body part of the variational wave functions

so that they can compare both spin-gapped and spin-gapless states on equal footing. To

obtain singlet and triplet excited states, we apply several quantum-number projections

to specify the quantum numbers of the wave function such as the total spin and mo-

mentum, which must be preserved because they commute with the Hamiltonian. This

procedure not only enables higher accuracy but also allows us to calculate the energy

gaps and excitation spectra directly.
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Fig. 2. (Color online) Ground-state phase diagram of J1-J2 Heisenberg model on square lattice

obtained in the present study. Staggered (stripe) magnetizations are denoted by m(q) with q = (π,π)

(q = (π, 0)). The dimer order parameter md is multiplied by 5.0 and ∆ denotes the triplet spin gap.

The curves are guides for the eyes. For the definitions of m(q) and md, see Sect. 3.

Our calculations up to 16× 16 sites yield the ground-state phase diagram after the

size extrapolation to the thermodynamic limit, as shown in Fig. 2. The staggered (stripe)

AF phase exists for J2/J1 ≤ 0.4 (J2 > 0.6), and the ground state for 0.4 < J2/J1 ≤ 0.6

has no magnetic order. In this nonmagnetic region, we found that the triplet gap closes

and becomes gapless in the region 0.4 < J2/J1 ≤ 0.5, while the VBC phase is obtained

for 0.5 < J2/J1 ≤ 0.6 with gapful spin-triplet excitations. We also report the power-law

decay of the spin-spin correlation function in the gapless region indicating the existence

of an algebraic spin-liquid phase in an extended region.

This paper is organized as follows. In Sect. 2, we first introduce the J1-J2 Heisen-

berg model and the mVMC method with quantum-number projections. In Sect. 3, we

determine the quantum numbers of the ground and excited states and report results of

the order parameters and triplet gap. The nature of the nonmagnetic region and the

4/25

J

between conduction and localized spins (J > 0). In the
following, we set the lattice constant a ¼ 1 and focus
on the quarter filling case, namely, at nc ¼ ð1=NsÞP

i!hcyi!ci!i ¼ 1=2 (Ns ¼ L$ L is the system size).
We study the possibility of CO in the model in Eq. (1) by

two complementary methods, VMC and CDMFT. In
the VMC calculations, we study the ground state properties
by employing a generalized BCS wave function with
the quantum number projection and the Gutzwiller and
Jastrow factors; jc i ¼ PGP JLSj"pairi. Here, the one-

body part j"pairi is the generalized pairing wave function

defined as j"pairi ¼ ðP#;$¼c;f

PNs
i;j¼1 f

#$
ij #

y
i"$

y
i#ÞNe=2j0i,

where Ne is the number of electrons (including f elec-
trons);LS is the spin projection operator to the total spin S
subspace; PG and P J are the Gutzwiller and Jastrow
factors, respectively [13]. The spin projection selects out
a subspace with the total spin S. This facilitates to describe
a ferromagnetic (FM) state even for the one-body part with
the total Sz ¼ 0 under the SU(2) symmetry. The Gutzwiller
factor penalizes the double occupation of electrons by

PG ¼ expð%P
i;#¼c;fg

#
i n

#
i"n

#
i#Þ, where n#i! ¼ #y

i!#i!; we

take gfi ¼ 1 for localized f electrons. The Jastrow factor
is introduced only for conduction electrons as P J ¼
exp½%ð1=2ÞPi;jv

c
ijn

c
i n

c
j', where nci ¼

P
!n

c
i!. In this study,

we restrict the variational parameters, gci , v
c
ij, and f#$ij , to

have 2$ 2 sublattice structure [16]. All the variational
parameters are simultaneously optimized by using the
stochastic reconfiguration method [13,17]. Our variational
wave function jc i can flexibly describe CO, AF, PM as
well as FM states on an equal footing [18]. The calcula-
tions are done up to 12$ 12 sites; to reduce the finite-size
effects, we choose appropriate boundary conditions for

each system size so as to satisfy the closed-shell condition
in the noninteracting case J ¼ 0. In addition to the ground
state by VMC, we calculate finite-T properties by CDMFT.
The calculations are done for two-site (1$ 2) and four-site
(2$ 2) clusters [see Figs. 1(d) and 1(e)] to accommodate the
four-site unit cellCOþ AF state found inVMC.For the two-
site case, we effectively consider a 2$ 2 sublattice order by
configuring the Green’s function with flipped spins so as to
accommodate the ordering pattern found in the four-site
cluster [Fig. 1(d)]. To solve the effective impurity problems
for the clusters, we employ the continuous-time quantum
Monte Carlo technique [15]. Typically, we repeat the
CDMFT loops for 50 times for convergence and performed
106–107 Monte Carlo measurements per loop.
Let us first discuss finite-T properties. Figure 1(a)

shows the finite-T phase diagram obtained by the
CDMFT calculations. The result shows that the model in
Eq. (1) exhibits CO at quarter filling in the intermediate
coupling region for 1:5 & J=t & 3:5 [19]. CO is a two-
sublattice checkerboard type, as shown in Fig. 1(f). T
dependence of the charge disproportionation at J=t ¼ 3
is shown in Fig. 1(b). The continuous development of the
order parameter nA % nB as lowering T suggests that this
CO transition is of second order. As shown in Fig. 1(a), the
critical temperature TCO grows rapidly as increasing J=t,
whereas it suddenly disappears for J=t * 3:5 in the T
range calculated. The behavior of TCO is very similar to
that obtained in infinite dimensions (corresponding to a
single-site cluster calculation) [11]. Interestingly, TCO does
not largely depend on the cluster sizes in the present
calculations.
In the CO phase, an AF order appears in the low T

region. In Fig. 1(c), we show T dependences of the
local magnetic moments of conduction electrons at the

FIG. 1 (color online). (a) Finite-T phase diagram for the model in Eq. (1) at quarter filling obtained by CDMFT. TCO and TAF denote
the critical temperatures for charge ordering and antiferromagnetic ordering, respectively. (b) T dependences of the local charge
density in the A and B sublattice, nA and nB, at J=t ¼ 3. (c) T dependences of the magnitude of local magnetic moment of conduction
electrons in the A and B sublattice, mA and mB, at J=t ¼ 3. The lines connecting the data points are the guides for eyes.
(d), (e) Sublattice for the two- and four-site cluster calculations. See the text for details. (f) Schematic picture of the CO phase
with AF order at the lowest T. The size of circles represent the magnitude of local density and the arrows show the magnetic moments.

PRL 110, 246401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
14 JUNE 2013

246401-2

LaFeAsO

HgBa2CuO4+δ

T. Misawa and M. Imada, Nat. Commun (2014). T. Ohgoe at al., PRB (2020).

S. Motira and M. Imada JPSJ (2014). 
see also Y. Nomura and M. Imada PRX (2021).

J1-J2  Heisenberg CO in Kondo larice model

T. Misawa at al., PRL (2013).



Applications of mVMC II
Quantum spin liquid in dmit saltsSpin nematic phase

Heisenberg model  
on pyrochlore lattice

HHG in 2D Mott ins.

N. Astrakhantesev et al., PRX (2021) C. Orthodoxou et al., npj QM (2021)
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Open-source software of mVMC

https://www.pasums.issp.u-tokyo.ac.jp/mvmc/

https://www.pasums.issp.u-tokyo.ac.jp/mvmc/


Developers of mVMC

M. Kawamura

T. Kato

K. Yoshimi
 S. Morita

T. Ohgoe

M. Imada

Y. Motoyama

K. IdoDevelopment of mVMC is  supported by  
“Project for advancement  of software usability  
in materials science” by ISSP

RuQing Xu



How to get mVMC
GitHub →  https://github.com/issp-center-dev/mVMC

- mVMC is pre-installed in supercomputer in ISSP (ohtaka, kugui)

HP   → https://www.pasums.issp.u-tokyo.ac.jp/mvmc/

tutorial  →  https://github.com/issp-center-dev/mVMC-tutorial

/home/issp/materiapps/intel/mvmc/

https://www.hpci-office.jp/for_users/appli_software/appli_mvmc

北海道大学　情報基盤センター (Grand Chariot) 
東北大学 サイバーサイエンスセンター (AOBA) 
東京大 情報基盤センター(Wisteria, Oakbridge-CX) 
東工大  学術国際情報センター (TUBAME3.0) 
名古屋大工 情報基盤センター (不老 [Furou]) 
大阪大 サイバーメディアセンター (OCTOPUS) 
理研　計算科学研究センター(富岳 [Fugaku]) 
九州大学 情報基盤研究開発センター (ITO)

全国のスパコンにもプレインストール [RIST]

https://github.com/issp-center-dev/mVMC
https://www.pasums.issp.u-tokyo.ac.jp/mvmc/
https://github.com/issp-center-dev/mVMC-tutorial
https://www.hpci-office.jp/for_users/appli_software/appli_mvmc


Let’s start mVMC !



Flow of mVMC

Users 
1.Preparing and/or modifying input files 
2.Calculations structure factors from correlations functions

It is better to use script languages (python, perl, ruby ….) for 
preparing input files and calculation physical properties 
In this tutorial, we use python3+bash scripts.

Standard mode
ex.1D Hubbard model

Input files

output

output: one/two-body Green functions

fourier tool:
calculating structure factors/visualization)

L= 16
model = “Hubbard”
lattice = “chain”
U = 4
t = 1
nelec=16
2Sz=0

Expert mode

- Files for Hamiltonian
- Files for wave functions 

optimization by SR method
[NVMCCalMode=0]

- optimization process
- optimized wave function

automatically
generated

calculating correlation

n(k), N(k), S(k)

output: momentum distribution,
charge/spin structure factors

users prepare 
all necessary input files

general Hamiltonians

[NVMCCalMode=1]



W = 4
L = 4
Wsub = 2
Lsub = 2
model = "FermionHubbard"
lattice = "Tetragonal"
t = 1.0
U = 4.0
nelec = 16

H = �t

X

hi,ji,�

(c
†
i�cj� +H.c.) + U

X

i

ni"ni#

Simple input files for conventional models

How to use mVMC: Standard modeI



How to use mVMC: Standard mode II

vmc       namelist.def Optimization

on laptop 
~ 2-3 minutes

2D Hubbard model, 
4×4,U/t=4,n=1

vmcdry  stan_opt.in Generating input files

random
UHF

ǻE

 10 1

 10 0

 10

 10

 10

 10

-1

-2

-3

-4

 10 1 10 0  10 3 10 2

SR step



Generating initial states

Pfaffian Slater determinant  
(Pairing wave function)

Slater determinant [mean-field wave func.]

unitary trans. 
of one-body 
states

Initial states from Unrestricted Hartree-Fock (UHF) calc. 
Preparing the codes for performing UHF calc. (usr/share/mvmc/tool)



Hubbard model

mVMC well reproduces results of  exact diagonalization! 
It is possible to calculate larger system sizes (100-1000 sites)



How to use mVMC: What is Standard mode ?

Hamiltonians 
coulombintra.def, trans.def, zlocspn.def …

Specifying calculations conditions 
modpara.def

Standard mode: 
Automatically generating input 
files

Green functions 
greenone.def, greentwo.def

vmcdry stan_opt.in

Expert mode: preparing input files manually
+List of input files: namelist.def

Specifying wave functions 
orbitalidx.def, gutzwilleridx.def,jastrowidx.def…

[Common in HΦ, mVMC]

[mVMC]



 Expert mode !



How to use mVMC: What is Expert mode ?

vmc.out namelist.def

Expert mode:preparing input files by yourself

Specifying calculations conditions 
modpara.def
Specifying wave functions 
orbitalidx.def, gutzwilleridx.def,jastrowidx.def…

[Common in HPhi,UHF]  Specifying Hamiltonians 
coulombintra.def, trans.def, zlocspn.def …

[Common in HPhi,UHF] Specifying correlations factors  
greenone.def, greentwo.def



How to use mVMC: Interall.def

Arbitrary two-body interactions can be treated

Example for general interactions

# of interactions parameters

real part imaginary part

i       σ1      j        σ2      k       σ3      l       σ4

H+ =
X

i,j,k,l

X

�1,�2,�3,�4

Iijkl�1�2�3�4c
†
i�1

cj�2c
†
k�3

cl�4



How to use mVMC: Expert mode
For standards interactions

- CoulombIntra

-Exchange

4.2 エキスパートモード用入力ファイル 49

4.2.7 CoulombIntra指定ファイル
オンサイトクーロン相互作用をハミルトニアンに付け加えます (S = 1/2の系で

のみ使用可能、ver. 0.2ではMPI非対応)。付け加える項は以下で与えられます。

H+ =
∑

i

Uini↑ni↓ (4.12)

以下にファイル例を記載します。! "
======================
NCoulombIntra 6
======================
========i_0LocSpn_1IteElc ======
======================

0 4.000000
1 4.000000
2 4.000000
3 4.000000
4 4.000000
5 4.000000# $

ファイル形式
以下のように行数に応じ異なる形式をとります。

• 1行: ヘッダ (何が書かれても問題ありません)。

• 2行: [string01] [int01]

• 3-5行: ヘッダ (何が書かれても問題ありません)。

• 6行以降: [int02] [double01]

パラメータ
• [string01]

形式 : string型 (空白不可)

説明 : オンサイトクーロン相互作用の総数のキーワード名を指定します (任意)。

• [int01]

形式 : int型 (空白不可)

説明 : オンサイトクーロン相互作用の総数を指定します。

• [int02]

形式 : int型 (空白不可)

説明 : サイト番号を指定する整数。0以上 Nsite未満で指定します。

================================= 
NExchange 2  
================================= 
===========Exchange============== 
================================= 
 0   1  0.5 
 1   2  0.5

================================= 
NCoulombintra 2  
================================= 
===========Exchange============== 
================================= 
 0   4.0 
 1   4.0

For details, see 
manuals



Tips on mVMC !



sub lattice

To reduce numerical cost, we often assume the sub lattice 
structure in the wave functions 
2×2 structure is standard one in the square lattice 
 [Lsub ,Wsub ]

Tips: 
- Sub lattice structure is consistent with the ordered states? 
- Sub lattice structure is consistent with the sym. of Hamiltonian? 
- Sub lattice structure is consistent with the momentum projection?

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

f0,9 = f2,11

ex.



Quantum number projections
- Total spin projection is only applicable to the Hamiltonian  
with SU(2) symmetry and total Sz=0 [modpara.def] 

-Momentum projection is only applicable to only for  
systems with translational symmetry  
[modpara.def, qptrans.def ]

Tips: 
- Projection is consistent with the sym. of ground states？ 
- Projection is consistent with the sym. of Hamiltonias？ 
Note that there is systems with total Sz=0 but SU(2) symmetry is not 
conserved  
[ex. Kane-Mele,BHZ model] 
- Projection is consistent with the sym. of correlations factors？

ρ(x), we can evaluate 〈A〉 as

〈A〉 ∼ 1

NMC

∑

x

〈ψ|A|x〉
〈ψ|x〉 , (22)

where NMC is the number of Monte Carlo samplings. In mVMC, we use the
Mersenne twister [29] for generating the pseudo random numbers.

3.2. Update
For the itinerant electron systems such as the Hubbard model, we update

the real-space configurations |x〉 with the hopping process, i.e., one electron
hops into another site as shown in Fig. 4(a). In addition to the hopping
update, we can use the exchange update, i.e., opposite spins exchange as
shown in Fig. 4(b). For the local spin models such as the Heisenberg model,
hopping update is prohibited and only the exchange update is allowed. Even
in the itinerant electrons models, in the strong coupling region, it is necessary
to use the exchange update for efficient Monte Carlo sampling because the
creation of the doubly occupied site (or equivalently the creation of the holon
site) becomes rare event in the strong coupling region.

In the Sz non-conserved system, we employ the hopping update with spin
flip as shown in Fig. 4 (c). We also employ local spin flip update show in
Fig. 4(d). Although the local spin flip is included in the hopping with spin
changing, for the efficient sampling, it is necessary to explicitly perform the
local spin flip.

As we show later, the inner product between the Pfaffian wave functions
and the real-space configuration |x〉 is given by Pfaffian of the skew symmetric
matrix X. It is time-consuming to calculate the Pfaffian for each real-space
configuration. Because the changes in the real-space configuration induce the
changes in a few rows and columns in X. Thus, by using Sherman-Morrison-
type update technique, numerical cost becomes lower. Details of the fast
update techniques of the Pfaffian wave functions are shown in refs. [3, 7].

3.3. Wave functions
In mVMC, the form of the variational wave function is given as

|ψ〉 = PL|φpair〉, (23)

where |φpair〉 denotes the one-body part of the wave functions, L denotes
the quantum-number projectors such as the total-spin and momentum pro-
jections, and P denotes the correlation factors such as the Gutzwiller and

15



Check points

- For non-interactions case, exact energy is reproduced？ 
(Check for fij) 

- Compare with the results by exact diagonalization for 
small system sizes ! 

- Energy is lower than the mean-filed calculations？ 

- Sub lattice structure is proper？



Summary

Basics of mVMC: 
- Flexible wave functions (# of parameter > 104) 
- Time-dependent variational principle → 

optimization of many variational parameters 
finite-temperature calculations                       
real-time evolutions

How to use mVMC: 
- Simple & Flexible user interfaces 
- Very easy to study conventional  models 
- Easy to study general models


