Kw Documentation
Release 2.0.0

June 13, 2017

Contents

Overview

Algorithm

2.1 Shifted BiCG method with seed switching technique
2.2 Shifted COCG method with seed switching technique
2.3 Shifted CG method with seed switching technique

Schematic workflow of this library

3.1 The schematic workflow of shifted BICG library
3.2 The schematic workflow of shifted COCG library,
3.3 The schematic workflow of shifted CG library

Install
4.1 Overall procedure
4.2 Options for configure

Usage
5.1 Details of each routines . . .

5.2 Sample codes for using shifted BiICG library

Re-distribution of this library

6.1 Contain Komega in your program v v v v v vt v e e e e e e e e e e e e e e e
6.2 Build Komega without Autoconf L

6.3 Lesser General Public License

Contact

Reference

p—

S W N

O 03

10

10

12
13
19

23
23
23
24

25

26

CHAPTER 1

Overview

This document is a manual for Kw which is the library to solve the shifted linear equation within the Krylov subspace.
This library provides routines to solve the following shifted linear equation (with the projection),

Gij(2) = (il(z] — H)j) = @} - (2] — H) " ep;. (1.1)

The source codes of Kw is written in FORTRAN and requires the BLAS Level 1 routines.

CHAPTER 2

Algorithm

This library provides the four kinds of numerical solvers. The kind of solvers is selected under the condition whether
the Hamiltonian H and/or the frequency z are complex or real number. It is noted that H must be Hermitian (symmet-
ric) for complex (real) number.

« (H,z)=
o (H,z)=
< (H,2)=
o (H,z)=

(complex, complex): Shifted Bi-Conjugate Gradient(BiCG) method /7]
(real, complex): Shifted Conjugate Orthogonal Conjugate Gradient(COCG) method /2]
(complex, real): Shifted Conjugate Gradient(CG) method (using complex vector)

(real, real): Shifted Conjugate Gradient(CG) method (using real vector)

For above methods, seed switching /2] is adopted. Hereafter, the number of the left (right) side vector is written as
Ny, (Ng). The details of each algorithm are written as follows.

2.1 Shifted BiCG method with seed switching technique

Gij(z) =0(i=1---Ny, j=1---Ng, k=1---N,)

=,
= an arbitrary vector, r°/d = 714 = 0

pir=0(i=1--Ny, k=1---N,), mp =4 =1(k =1---N,)

p=oo,a=l, Zseed = 0

do iteration

o Seed equation

old

P

B =

=p, p=7"-1
p/p°

q = (Zseedf - }AI)T'

(0%

_ _ p
=& = T h/a

o Shifted equation
dok=1---N,

Kw Documentation, Release 2.0.0

W;ew = [1 + a(zk - Zseed)]ﬁk - (ffalﬁd(

doi=1---Ng

old
ﬂ—k’ —

7Tk)

1d__old
o= Lk T T .
Pik = 7o -7+ ik

Gij(zx) = Gij(zr) + %Oépik

k ‘ k> Tk k
e][d d()i
end d() k

q=(eql — H)F, q= (1 + %) F—atq— S0 M = F F =g

o Seed switch

. . ld

Search k which gives the smallest || . — Zseed, Tseeds Tomoq
_ old __ ,,old old ~ o~ * ~old __ ~old oldx
r= r/ﬂ-seed? r =T /Trseed7 r= r/ﬂ-seed’ r =r Tseed

o= (WSeISd/Wsccd)av pP= p/(”?égdﬂgégd)

{7k = T /Toced, TR = 7R /w2
if(|r| < Threshold) exit
end do iteration

end do j

2.2 Shifted COCG method with seed switching technique

This method is obtained by # = r*, #°'9 = r°ld* jn the BiCG method.

Gij(z) =0(G=1---N, j=1---Ng, k=1---N,)

doj=1---Np
=, rold =0

pik=06=1---Np, k=1---N,), m =74 =1(k=1---N,)

p=00, a=1, zseea =0

do iteration

o Seed equation
old

p=pp=TT

B =p/p™

q= (Zseedf - ﬁ)’“

ol = a, a= r'q—pﬁ’p/a
o Shifted equation
dok=1---N,

2.2. Shifted COCG method with seed switching technique 3

Kw Documentation, Release 2.0.0

W;ew = [1 + a(zk - Zseed)]ﬁk - (ffalﬁd(

doi=1---Ny

old
ﬂ—k —

7Tk)

1 % 7_{_;‘:)ld zld
Pik = 7o Pi T+ T Ppik

Gij(zx) = Gij(zr) + %Oépik

77]3(= Tk, T = T‘-k‘
enddOZ

end do k
q= (1+(;"T€1)r—aq—%r°1d, rilfd=r r=gq
o Seed switch

L 1d
Search k which gives the smallest |7g| . — Zseeds Tseed; Topoq

old
seed

Q= (Ws?égd/ﬂseed)av p= p/(”?égdﬁgelgd)
{mh = Tk /Toeed, TR = 7 /T

if(|r| < Threshold) exit

7 =7/Tgeed, T4 =7 /7r

end do iteration

end do j

2.3 Shifted CG method with seed switching technique

This method is obtained by # = 7, #°'¢ = r°!4 in the BiCG method.
Gij(z) =06 =1---Np, j=1---Ng, k=1---N.,)
doj=1---Ng
r=p, rold — o
pik=06=1---Np, k=1---N,), m =74 =1(k=1---N,)
p=00, =1, 25eea =0
do iteration

o Seed equation

P = p=r* g

B=p/p°M

q = (zseeal — H)7

0 — o = W

o Shifted equation

dok=1---N,
oW = [1 + a2k — Zseed)| Tk — ;‘fd (ﬂ'gld —)
doi=1---Ng

4 Chapter 2. Algorithm

Kw Documentation, Release 2.0.0

old

2
Pik = 7-pi T+ (7:;) Bpirk

Gij(zx) = Gij(zr) + ,:g%apik

7 =y, T = mhew

end do ¢
end do k&
- (1+%)r_aq_%rold’ rold=p r=gq
o Seed switch
Search k which gives the minimum value of |7x| . = Zseeds Tseeds w;’el‘eid

r = r/ﬂ-seed7 ,’,.old — ,’,.old/ﬂ.old

seed
2
Q= (ﬂ—ggd/”sccd)av p= P/Wgelceid
{mh = 7k /Tsceds ngd = ﬂ'lgld/ﬂ:égd

if(|r| < Threshold) exit
end do iteration

end do j

2.3. Shifted CG method with seed switching technique 5

CHAPTER 3

Schematic workflow of this library

In the following description, the loop for N is omitted for simplicity and instead of G;;(z), the Ny -dimensional
vector Xy, is obtained by using the library.

The names of the routines is defined as follows.

komega_bicg_init, komega_cocg_init, komega_cg_c_init,komega_cg_r_init
Set the initial conditions such as the allocation of variables used in the library.

komega_bicg_update, komega_cocg_update, komega_cg_c_update,
komega_cg_r_update

These routines are called in the iteration to update the solution vectors.

komega_bicg finalize, komega_cocg_finalize, komega_cg_c_finalize,
komega_cg_r_finalize

Release the allocated vectors in the library.

komega_bicg_getcoef, komega_cocg_getcoef, komega_cg_c_getcoef,
komega_cg_r_getcoef

Get the @, B3, Zseed, '™ conserved at each iteration.

komega_bicg_getvec, komega_cocg_getvec, komega_cg_c_getvec,
komega_cg_r_getvec

Get the vectors 7, r°ld, 7, 7019,

komega_bicg_restart, komega_cocg_restart, komega_cg_c_restart, CG_R_restart

Note:

Give the vector size Ny corresponding to the size of the Hilbert space and the number of the frequency z.
Allocate the two vectors (in the case of BiCG method, four vectors) with the size of Ny.
Give the function for the Hamiltonian-vector production.

Allocate the solution vectors. It is noted that the length of each solution vector is not always equal to Ny. In
fact, the its length in the previous section is N. In this case, the length of the (bi-)conjugate gradient vector
pr(k = 1,--- N,) also becomes N;. We have to prepare a code for projecting Ng-dimensional vector onto
Npdimensional space.

rL:PTra PE("PD"'?SONL)

If the result converges (or a breakdown occurs), komega_»_update return the first element of status as a
negative integer. Therefore, please exit loop when status (1) < 0.

Kw Documentation, Release 2.0.0

e The 2-norm is used for the convergence check in the routine komega_*_update. Therefore, if 2-norms
of residual vectors at all shift points becomes smaller than threshold, this routine assumes the result is
converged.

 We can obtain the history of a, 3, r" for restarting calculation. In this case, itermax must not be 0.

3.1 The schematic workflow of shifted BiCG library

Allocate v19, V13, Vo, V3, {X1}, 1Y vy = P

komega_bicg_init (N_H, N_L, N_z, x, z, itermax, threshold) start
Allocate v, vs, {1}, {729}, {px}
Copy {2}
If itermax # 0, allocate arrays to store «, 3, and:math:{bf r}*{rm L} at each iteration.
v4 = v3 (an arbitrary vector), vs = vs = 0,
pr=%x,=0k=1--N,), mp=md=1(k=1---N,)
p=00, @ =1, Zgeed =0

old

(v =7, v3 =7 v, =7 v; =7)

komega_bicg_init finish
do iteration
rl =]57‘1)2
v12 = Hvy, v1s = Hoy [Or (v12,v14) = H(v2,v4)]
komega_bicg_update(v_12, v_2, v_14, v_4, x, r_small, status) start

o Seed equation

1d _ .
prE = p, p =0y V2

B =p/p

V12 = ZseedV2 — V12, V14 = ZiuqV4 — V14

old _ — 4
@ =0, a= vi-viz—Pp/a

o Shifted equation

dok=1---N,

TRV = [1 + a2k — Zseed)| Tk — ;ﬁ,?d (ngd — k)

old __old

_ 1L Tk Tk
Pr = T+ A fpy

Tk

Tl
X = X + ﬂzﬁapk
1d _ _
TS = T, Tl = TR0
end do k

— apf af — —
V1o = (1 + aold) Vg — QW12 — Lo U3, V3 = V2, U2 = V12

* g%

_ a*pgr * a*p _ _
Vig = (1 + aold*) Vg — QU1 — Az Vs, Us = V4, Vg = V1

3.1. The schematic workflow of shifted BiCG library 7

Kw Documentation, Release 2.0.0

o Seed switch

Search k which gives the smallest |7y| . — Zseeds Tseed; Topoq

1d

oldx*

— — 1d _ * —
V2 = Iv2/ﬂ-596d’ U3 = v3/7T§eed’ Vg = v4/7Tseed’ Vs = v5/7Tseed

Q= (ﬂ—g’égd/ Tseed) P = p/ (nggdﬁgelzgd

— d _ 1d 1d
{7Tk = 7Tk/7rseed7 7'('2 - 7"; /Tr;)eed

komega_bicg_update finish

if(status(1) < O (This indicates |va| < Threshold)) exit

end do iteration
komega_bicg_finalize start

Deallocate vy, vs, {7}, {7219}, {pr}

komega_bicg_finalize finish

3.2 The schematic workflow of shifted COCG library

Allocate v1, va, {xi},r" vy = @,
komega_cocg_init (N_H, N_L, N_z, x,
Allocate v, {7}, {7219}, {pr}
Copy {2k}

z, itermax,

threshold) start

If itermax # 0 , allocate arrays to store v, 3, and r" .

vy =0,

pr=xt=0k=1---N,), mp=nd=1(k=1---N,)

p=00, a=1 =0, zseea =0
(ve =71, v3 =7°)
komega_cocg_init finish
do iteration
rt = Plo,
vy = Ho,
komega_cocg_update (v_1,
o Seed equationw
PP =p, p=vy- vy
B =p/p°
V1 = ZseedV2 — V1
W= 0= gt
o Shifted equations
dok=1---N,

v_2, %X,

r_small, status) start

Chapter 3. Schematic workflow of this library

Kw Documentation, Release 2.0.0

W;ew = [1 + a(zk - Zseed)]ﬂ_k - (Sfjlﬁd (ﬂ'k
old __old
1
L= o T+ ST fp

V3 = V2, V2 = V1

o Seed switch

Search k which gives the smallest Ipi_kl . = Zsced, Tseed, T

B _ 1d
Vo = v2/7rseeda V3 = 'U3/7T§c(cd

a = (W;)elgd/ﬂseed)av pP= p/(ﬂé)égdﬂgg(eid)
{7k = T /Toced, TR = 7P /w2y

komega_cocg_update finish

if(status(1) < O (This indicates |vs| < Threshold.)) exit

end do iteration
komega_cocg_finalize start
Deallocate vs, {7y}, {7014}, {pr}

komega_cocg_finalize finish

old __

3.3 The schematic workflow of shifted CG library

The workflow is the same as that of the shifted COCG library.

3.3. The schematic workflow of shifted CG library

CHAPTER 4

Install

4.1 Overall procedure

First, please type

./configure —--prefix=install_dir
Then, this script checks the compiler and the libraries required for the installation, and creates Makefiles.
install_dir indicates the full path of the directory where the library is installed (you should replace it according
to your case). If none is specified, /use/local/ is chosen for storing libraries by make install (Therefore, if

one is not the admin, install_dir must be specified to the different directory). configure has many options,
and they are used according to the environment etc. For more details, please see Options for configure.

After configure finishes successfully and Makefiles are generated, please type

S make

to build libraries. Then please type

S make install

to store libraries and the sample program to install_dir/liband install_dir/bin, respectively. Although
one can use libraries and the sample program without make install, they are a little different to the installed one.

Add the Kw library directory (install_dir/1ib) to the search path of the dynamically linked program (environ-
ment variable LD_LIBRARY_PATH).

$ export LD_LIBRARY PATH=${LD_LIBRARY PATH}:install dir/lib

4.2 Options for configure

configure has many options and environment variables. They can be specified at once. E.g.

./configure --prefix=/home/komega/ —--with-mpi=yes FC=mpif90

All options and variables have default values. We show a part of them as follows:
—-——prefix

Default: ——-prefix=/usr/local/. Specify the directory where the library etc. are installed.

——with-mpi

10

Kw Documentation, Release 2.0.0

Default: ——with-mpi=no (without MPI). Whether use MPI (——with-mpi=yes), or not.
——with-openmp

Default: —-—with-openmp=yes (with OpenMP). Whether use OpenMP or not
(-—with-openmp=no).

——enable-shared

Default: ——enable-shared. Whether generate shared library.
——enable-static

Default: ——enable-static. Whether generate static library.
——-disable-zdot

Default: ——enable-zdot. When ZDOTC and ZDOTU in BLAS do not work correctly (e.g. standard
BLAS in MacOSX), please use this option to be disable these functions.

——enable-threadsafe

Default: ——disable-threadsafe. If you want to call Kw routine in the parallel region (i.e. plan to
solve different equations among threads), please use this option (Experimental).

FC

Default: The fortran compiler chosen automatically from those in the system. When ——with-mpi
is specified, the corresponding MPI compiler (such as mpi£90) is searched. If FC printed the end of
the standard-output of configure is not what you want, please set it manually as ./configure
FC=gfortran.

—-—help

Display all options including above, and stop without configuration.

4.2. Options for configure 11

CHAPTER 5

Usage

The calculation is done to utilize functions by the following procedures.
* Initialization (*_inir)
» Update results iteratively (*_update)
* (Optional) Take the information for the restart (*_getcoef, *_getvec)
* Finalization (*_finalize)
The restart calculation can be done by the following procedures.
* Initialization with the information of the previous calculation (*_restart)
» Update results iteratively (*_update)
* (Optional) Take the information for the further restart (*_gercoef, *_getvec)

* Finalization (*_finalize)

Warning: Since Kw is not thread safe, these routine must be called from the outside of the OpenMP-parallel
region. If you want to call Kw routine in the parallel region (i.e. plan to solve different equations among threads),
please use ——enable-threadsafe option of configure (Experimental).

For FORTRAN, the modules can be called by

USE ! Conjugate-gradient method for real vectors
USE s ! Conjugate-gradient method for complex vectors
USE komega_cocg ! Conjugate-orthogonal conjugate-gradient mehod
USE komega_bicg ! Biconjugate-gradient method

When we call Kw from C/C++ codes, we should include the header file as

#include komega.h

Scalar arguments should be passed as pointers. For MPI/Hybrid parallelized routine, the above line becomes Also, the
communicator argument for the routine should be transformed from the C/C++’s one to the fortran’s one as follows.

comm_f = MPI_Comm_c2f (comm_c);

12

Kw Documentation, Release 2.0.0

5.1 Details of each routines

5.1.1 *_init

Set and initialize internal variables in libraries. These routines should be called first before solving the shifted equation.

Syntax
Fortran
CALL komega_cg_r_init (ndim, nl, nz, x, z, itermax, threshold, comm)
CALL komega_cg_c_init (ndim, nl, nz, x, 2z, itermax, threshold, comm)
CALL komega_cocg_init (ndim, nl, nz, x, z, itermax, threshold, comm)
CALL komega_bicg_init (ndim, nl, nz, x, z, itermax, threshold, comm)
C/C++

komega_cg_r_init (&ndim, &nl, &nz, x, z, &itermax, &threshold, &comm)
komega_cg_c_init (&ndim, &nl, &nz, x, z, &itermax, &threshold, &comm);
komega_cocg_init (&ndim, &nl, &nz, x, z, &itermax, &threshold, &comm)
komega_bicg_init (&¢ndim, &nl, &nz, x, z, &itermax, &threshold, &comm)
Parameters
INTEGER, INTENT (IN) :: ndim
The dimension of solution vectors for the linearized equation. ndim for the dimension of
variables in other routine is equal to this.
INTEGER, INTENT (IN) :: nl
The dimension of projected solution vectors. n1 for the dimension of variables in other routine

is equal to this.

INTEGER, INTENT (IN) :: nz

The number of shifted points. nz for the dimension of variables in other routine is equal to

this.
REAL (8) , INTENT (OUT) :: x(nlxnz) ! (for "CG_R init", "CG_C_init")
COMPLEX (8) , INTENT (OUT) :: x(nl*nz) ! (for other cases)

The solution vector. In this procedure, 0 vector is returned.

REAL (8) , INTENT (IN) :: z(nz) ! (for "CG_R init", "CG_C _init")
COMPLEX (8) , INTENT (IN) :: z(nz) ! (for other cases)

Shifted points.
INTEGER, INTENT (IN) :: itermax

The maximum iteration number for allocating arrays for the restart calculation. When
itermax=0 , these arrays are not allocated, and the restart calculation described later be-
comes unavailable.

REAL (8) , INTENT (IN) :: threshold

The threshold value for the convergence determination. When the 2-norm of the residual vector
for the seed equation becomes smaller than this value, the calculation is finished.

5.1. Details of each routines 13

Kw Documentation, Release 2.0.0

INTEGER, INTENT (IN) , OPTIONAL

comm

Optional argument. Communicators for MPI such as MPI_COMM_WORLD. Only for MPI /
Hybrid parallelization. For C compiler, just pass NULL to omit this argment.

5.1.2 *_restart

For the restart calculation, these routines are used instead of *_inir. Set and initialize internal variables in libraries.
These routines should be called first before solving the shifted equation.

Syntax
Fortran
CALL komega_cg_r_restart(ndim, nl, nz, x, z, itermax, threshold, status, &
& iter_old, v2, vl12, alpha_save, beta_save, z_seed, r_1_save, comm)
CALL komega_cg_c_restart (ndim, nl, nz, x, z, itermax, threshold, status, &
& iter_old, v2, vl12, alpha_save, beta_save, z_seed, r_1_save, comm)
CALL komega_cocg_restart (ndim, nl, nz, x, z, itermax, threshold, status, &
& iter_old, v2, vl12, alpha_save, beta_save, z_seed, r_1_save, comm)
CALL komega_bicg_restart (ndim, nl, nz, x, z, itermax, threshold, status, &
& iter_old, v2, vl12, v4, vl4, alpha_save, beta_save, &
& z_seed, r_1_save, comm)
C/C++
komega_cg_r_restart (&ndim, &nl, &nz, x, z, &itermax, &threshold, status, &
& &iter_old, v2, v12, alpha_save, beta_save, &z_seed, r_1_save,
komega_cg_c_restart (&ndim, &nl, &nz, x, z, &itermax, &threshold, status, &
& &iter_old, v2, v12, alpha_save, beta_save, &z_seed, r_1_save,
komega_cocg_restart (&ndim, &nl, &nz, x, z, &itermax, &threshold, status, &
& &iter_old, v2, vl12, alpha_save, beta_save, &z_seed, r_1_save,
komega_bicg_restart (&ndim, é&nl, &nz, x, z, &itermax, &threshold, status, &
& &iter_old, v2, v12, v4, vl14, alpha_save, beta_save, &
& &z_seed, r_1_save, &comm);
Parameters
INTEGER, INTENT (IN) :: ndim
INTEGER, INTENT (IN) nl
INTEGER, INTENT (IN) nz
REAL (8) , INTENT (OUT) x(nl*nz)
REAL (8) , INTENT (IN) z(nz) ! (for "CG_R restart", "CG_C _restart")
COMPLEX (8) , INTENT (IN) z(nz) ! (Other)
INTEGER, INTENT (IN) itermax

REAL (8) , INTENT (IN)
INTEGER, INTENT (IN) , OPTIONAL

threshold

comm

The definition is same as *_init. See the parameters in *_init.

INTEGER, INTENT (OUT) :: st

The error code is returned.

First component(status (1))

If the solution is converged or a breakdown occurs, the current total number of iter-
ation with the minus sign is returned. In other cases, this routine returns the current
total number of iteration. The calculation is continuable only when status (1)

14

Chapter 5. Usage

&comm) ;

&comm) ;

&comm) ;

Kw Documentation, Release 2.0.0

is the positive value; otherwise the result is meaningless even if the calculation is
continued.

Second component(status (2))

1 is returned if itermax is set as a finite value and the convergence condition is not
satisfied at the itermax-th iteration. 2 is returned if « diverges. 3 is returned if
Tseed Decomes 0. In the case of COCG_restart orBiCG_restart, 4 is returned
if the residual vector and the shadow residual vector are orthogonal. In other cases, 0
is returned.

Third component(status (3))
The index of the seed point is returned.

INTEGER, INTENT (IN) :: iter old

The number of iteration for the previous calculation.
REAL (8) , INTENT (IN) :: v2(ndim) ! (for "CG_R restart")
COMPLEX (8) , INTENT (IN) :: v2(ndim) !/ (Other)

The residual vector at the last step for the previous calculation.
REAL (8) , INTENT (IN) :: v12(ndim) ! (for "CG_R restart")
COMPLEX (8) , INTENT (IN) :: v12(ndim) !/ (Other)

The residual vector at the second from the last step for the previous calculation.
REAL (8) , INTENT (IN) :: alpha_ save(iter_old) ! (for "CG_R restart"”, "CG_C_restart")
COMPLEX (8) , INTENT (IN) :: alpha_save(iter_old) ! (Other)

The parameters o obtained by the previous calculation at each steps by (Bi)CG methods.
REAL (8) , INTENT (IN) :: beta_save(iter_old) ! (for "CG_R restart", "CG C _restart")
COMPLEX (8) , INTENT (IN) :: beta save(iter_old) ! (Other)

The parameters § obtained by the previous calculation at each steps by (Bi)CG methods.
REAL (8) , INTENT (IN) :: z_seed ! (for "CG_R restart", "CG_C _restart")

Z

COMPLEX (8) , INTENT (IN) _seed ! (Other)

The value of the seed shift for the previous calculation.

REAL (8) , INTENT (IN) :: r_1 save(nl,iter_old) ! (for "CG_R restart")
COMPLEX (8) , INTENT (IN) :: r_1

_save(nl,iter_old) ! (Other)

The projected residual vector at each iteration for the previous calculation.

REAL (8) , INTENT (IN) :: v4(ndim) ! (for "CG_R restart")
COMPLEX (8) , INTENT (IN) :: v4(ndim) ! (Other)

The shadow residual vector at the last step for the previous calculation.

REAL (8) , INTENT (IN) :: v14(ndim) ! (for "CG_R restart")
COMPLEX (8) , INTENT (IN) :: vl14(ndim) ! (Other)

The shadow residual vector at the second last step for the previous calculation.

5.1.3 *_update

It is called alternately with the matrix-vector product in the loop and updates the solution.

5.1. Details of each routines 15

Kw Documentation, Release 2.0.0

Syntax

Parameters

Fortran

CALL komega_cg_r_update(vl2, v2, x, r_1, status)

CALL komega_cg_ C_. > (v12, v2, x, r_1l, status)

CALL komega_cocg_update(vl2, v2, x, r_1, status)

CALL komega_bicg_update(vl2, v2, vl14, v4, x, r_1, status)
C/C++

komega_cg_r_update(vl2, v2, x, r_1, status);
komega_cg_c_update (v12, v2, x, r_1l, status);
komega_cocg_update (v12, v2, x, r_1l, status);
komega_bicg_update(vl2, v2, v14, v4, x, r_1l, status);
REAL (8) , INTENT (INOUT) v12(ndim) ! (for "CG_R_update")

COMPLEX (8) , INTENT (INOUT) !

v12 (ndim) (Other)
The product of the residual vector (v2) and the matrix. This routine returns the 2-norm of
the updated residual vector as a first element of this array. This returned value is used, for

examples, for printing the convergence profile.

REAL (8) , INTENT (ITNOUT) !

COMPLEX (8) , INTENT (INOUT)

v2 (ndim) (for "CG_R_update)

v2(ndim) ! (Other)

The residual vector is input and the updated residual vector is output.

REAL (8) , INTENT (IN)
COMPLEX (8) , INTENT (IN)

v1l4 (ndim) ! (for
v14 (ndim) !

"CG_R_update")
(Other)
The product of the shadow residual vector (v4) and the matrix is input.

REAL (8) , INTENT (INOUT)
COMPLEX (8) , INTENT (INOUT)

v4 (ndim)
v4 (ndim) !

! (for "CG_R_update')

(Other)

The shadow residual vector is input and the updated vector is output.

INTEGER, INTENT (OUT)

status (3)

The error code is returned.
First component (status (1))

If the solution is converged or a breakdown occurs, the current total number of iter-
ation with the minus sign is returned. In other cases, this routine returns the current
total number of iteration. The calculation is continuable only when status (1)
is the positive value; otherwise the result is meaningless even if the calculation is
continued.

Second component (status (2))

1 is returned if itermax is set as a finite value in the *_inif routine and the con-
vergence condition is not satisfied at the itermax-th iteration. 2 is returned if
« diverges. 3 is returned if 7geeq becomes 0. In the case of COCG_update or
BiCG_update, 4 is returned if the residual vector and the shadow residual vector
are orthogonal. In other cases, O is returned.

Third component (status (3))

The index of the seed point is returned.

Chapter 5

. Usage

Kw Documentation, Release 2.0.0

5.1.4 *_getcoef

Get the coefficients used in the restart calculation. To call these routines, i termax in *_init routine must not be 0 .

The total number of iteration (i1ter_old) used in this routine is computed by using st atus which is an output of
*_update as follows:

iter _old = ABS(status (1))

Syntax
Fortran
CALL komega_cg_r_getcoef (alpha_save, beta_save, z_seed, r_1_save)
CALL komega_cg_c_getcoef (alpha_save, beta_save, z_seed, r_1_save)
CALL komega_cocg_getcoef (alpha_save, beta_save, z_seed, r_1_save)
CALL komega_bicg_getcoef (alpha_save, beta_save, z_seed, r_1_save)

C/C++

komega_cg_r_getcoef (alpha_save, beta_save, &z_seed, r_1_save);
komega_cg_c_getcoef (alpha_save, beta_save, &z_seed, r_1_save);
komega_cocg_getcoef (alpha_save, beta_save, &z_seed, r_1_save);
komega_bicg_getcoef (alpha_save, beta_save, &z_seed, r_1l_save);

’

’

Parameters
REAL (8) , INTENT (OUT) :: alpha_save(iter_old) ! (for "CG_R_restart", "CG_C_restart")
COMPLEX (8) , INTENT (OUT) :: alpha_save(iter_old) ! (Other)

The parameters « of the (Bi)CG method at each iteration.

REAL (8) , INTENT (OUT) a_save (iter_old) ! (for "CG_R restart", "CG_C_restart")
COMPLEX (8) , INTENT (OUT) :: beta_save(iter_old) ! (Other)

The parameters /3 of the (Bi)CG method at each iteration.

REAL (8) , INTENT (OUT) :: z_seed ! (for "CG_R restart", "CG C _restart")
COMPLEX (8) , INTENT (OUT) :: z_seed ! (Other)

Seed shift.
REAL (8) , INTENT (IN) :: r_1 save(nl,iter_old) ! ("CG_R restart")
COMPLEX (8) , INTENT (IN) :: r_ 1 _save(nl,iter_old) ! (Other)

The projected residual vectors at each iteration.

5.1.5 *_getvec

Get the residual vectors to use the restart calculation. To call these routines, itermax in the *_inif routine must not
be 0.

Syntax
Fortran
CALL komega_cg_r_getvec (r_old)
CALL komega_cg_c_getvec(r_old)
CALL komega_cocg_getvec (r_old)
CALL komega_bicg_getvec(r_old, r_tilde_old)

5.1. Details of each routines 17

Kw Documentation, Release 2.0.0

C/C++

komega_cg_r_getvec (r_old)
komega_cg_c_getvec (r_ old)
komega_cocg_getvec (r_old);
komega_bicg_getvec (r_old, r_tilde_old);

Parameters
REAL (8) , INTENT (OUT) :: r_old(ndim) ! (for "CG_R _getvec")
COMPLEX (8) , INTENT (OUT) :: r_old(ndim) ! (Other)

The residual vector at the second last step in the previous calculation.

COMPLEX (8) , INTENT (OUT) :: r_tilde_old(ndim)

The shadow residual vector at the second last step in the previous calculation.

5.1.6 *_getresidual
Get the values of 2-norm of the residual vector at each shift points. These routines can be called from anywhere
between * _init and *_finalize . These routines do not affect the calculation results.
Syntax
Fortran

CALL komega_Ccg_r__
CALL kom
CALL komega_cocg_getresidual (res
CALL komega_bicg_

getresidual (res

)
ega_cg_c_getresidual (res)
)

s)

getresidual (re

C/C++

komega_cg_r_getresidual (res);
komega_cg_c_getresidual (res);
komega_cocg_getresidual (res);
komega_bicg_getresidual (res);

Parameters

COMPLEX (8) , INTENT (OUT) :: res(nz)

The values of 2-norm of the residual vector at each shift points are returned.

5.1.7 *_finalize

Release memories of the arrays stored in the library.

Syntax
Fortran
CALL komega_cg_ r_finalize/()
CALL ! ega_cg_c_finalize()
CALL komega_. bypqifinalize()
e ()

CALL komega_bicg_finali

C/C++

18 Chapter 5. Usage

Kw Documentation, Release 2.0.0

komega_cg_r_finalize()
komega_cg_c_finalize()
komega_cocg_finalize();
komega_bicg_finalize()

’

I

r

5.2 Sample codes for using shifted BiCG library

As a typical example, the usage of shifted BiCG library is shown below.

PROGRAM my_prog
!

USE komega_bicg,

& komega_bicg_update, komega_bicg_getcoef,
& komega_bicg_getvec, komega_bicg _finalize
USE solve_cc_routines, ONLY : input_size, input_restart, &

& projection, &

& hamiltonian_prod, generate_system,
& output_restart, output_result

!

IMPLICIT NONE
/

INTEGER, SAVE

ndim, &

nz, &

nl, &

itermax, &

iter_old

- 2 2 22 2 2

REAL (8) , SAVE
& threshold !
!

!

!

!

&

ONLY : komega_bicg_init, komega_bicg_restart, &

Size of Hilvert space
Number of frequencies
Number of Left vector

Max.

number of iteraction

Number of iteraction of previous run

&

COMPLEX (8) , SAVE
& z_seed ! Seed frequency

!

&

Convergence Threshold

COMPLEX (8) ,ALLOCATABLE, SAVE :: &

& 7z () ! (nz): Frequency

!

COMPLEX (8) ,ALLOCATABLE, SAVE :: &

& ham(:,:), &

& rhs(:), &

& v12(:), v2(:), & ! (ndim): Working vector
& v14(:), v4(:), & ! (ndim): Working vector
& r_1(:), & ! (nl) Projeccted residual vector
& %(:,:) ! (nl,nz) Projected result

!

! Variables for Restart

!

COMPLEX (8) , ALLOCATABLE, SAVE :: &

& alpha(:), beta(:) ! (iter_old)
i
COMPLEX (8) , ALLOCATABLE, SAVE :: &

& r_1 _save(:,
i

) !

(nl,iter_old) Projected residual vectors

! Variables for Restart

!
INTEGER :: &

5.2. Sample codes for using shifted BiCG library

19

Kw Documentation, Release 2.0.0

& iter, & ! Counter for Iteration

& status (3)
!

LOGICAL :: &
& restart_in, & ! If .TRUE., sestart from the previous result
& restart_out ! If .TRUE., save datas for the next run

!
! Input Size of vectors, numerical conditions
!
CALL input_size(ndim,nl,nz)
CALL input_condition(itermax,threshold, restart_in,restart_out)
!
ALLOCATE (v12 (ndim), v2(ndim), v14(ndim), v4(ndim), r_1(nl), &
& x(nl,nz), z(nz), ham(ndim,ndim), rhs(ndim))
!
CALL generate_system(ndim, ham, rhs, z)
!
WRITE (%, *)
WRITE (%,) "##### CG Initialization #####"
WRITE (*, *)
!
IF (restart_in) THEN
!
CALL input_restart(iter_old, zseed, alpha, beta, r_1_save)
!
IF (restart_out) THEN
CALL komega_bicg_restart (&

& ndim, nl, nz, x, z, itermax, threshold, &
& status, iter_old, v2, v12, v4, vl14, alpha, &
& beta, z_seed, r_1_save)
ELSE
CALL komega_bicg_restart (&
& ndim, nl, nz, x, z, 0, threshold, &
status, iter_old, v2, v12, v4, vl14, alpha, &
& beta, z_seed, r_1_save)
END IF

/
! These vectors were saved in BiCG routine
!

DEALLOCATE (alpha, beta, r_1_save)
!

IF (status(l) /= 0) GOTO 10
/
ELSE
!
! Generate Right Hand Side Vector
!
v2(l:ndim) = rhs(l:ndim)
v4 (l:ndim) = CONJG(v2 (l:ndim))
!v4 (1:ndim) = v2(1:ndim)
i
IF (restart_out) THEN
CALL komega_bicg_init (ndim, nl, nz, x, z, termax, threshold)
ELSE
CALL komega_picg_init (ndim, nl, nz, x, z, 0, threshold)
END IF

!

END IF

20

Chapter 5. Usage

Kw Documentation, Release 2.0.0

!

! BiCG Loop

!

WRITE (*, %)

WRITE (%, x) "##### CG Iteration #####"
WRITE (*, %)

i

DO iter = 1, itermax

!

! Projection of Residual vector into the space
! spaned by left vectors

!

r_1(l:nl) = projection(v2(l:nl))

!

!I' Matrix-vector product

!
CALL hamiltonian_prod(Ham, v2, v12)
CALL hamiltonian_prod(Ham, v4, vl14)
!

! Update result x with BiCG

!

CALL komega_pbicg_update(vl12, v2, vl14, v4, x, r_1, status)
!

WRITE (%,’ (a,1,a,31i,a,el5.5)") "lopp : ", iter, &

& ", status : ", status(1:3), &
& ", Res. : ", DBLE(v12(1))

IF (status (1) < 0) EXIT
/

END DO

!
IF (status (2) == 0) THEN

WRITE (%,) " Converged in iteration ", ABS(status(l))
ELSE IF (status(2) == 1) THEN

WRITE (%, *) " ©Not Converged in iteration ", ABS(status(l))
ELSE IF (status(2) == 2) THEN

WRITE (x,*) " Alpha becomes infinity", ABS(status(l))
ELSE IF (status(2) == 3) THEN

WRITE («,*) " Pi_seed becomes zero", ABS(status(l))
ELSE IF (status(2) == 4) THEN
WRITE (*,) " Residual & Shadow residual are orthogonal", &
& ABS (status (1))
END IF

!
} Total number of iteration
!
iter _old = ABS(status(1l))
!
! Get these vectors for restart in the Next run
!
iF(restartiout) THEN
!
ALLOCATE (alpha (iter_old), beta(iter_old), r_1_save(nl,iter_old))
!
CALL komega_bicg_getcoef (alpha, beta, z_seed, r_1_save)
CALL komega_bicg_getvec(vl2,v14)
!
CALL output_restart (iter_old, z_seed, alpha, beta, &
& r_1_save, v12, vl4)

5.2. Sample codes for using shifted BiCG library 21

Kw Documentation, Release 2.0.0

!
DEALLOCATE (alpha, beta, r_1_save)
!
END IF
./
10 CONTINUE
i
! Deallocate all intrinsic vectors
!
CALL komega_bicg_finalize ()
!
! Output to a file
i
CALL output_result(nl, nz, z, x, r_1l)
!

DEALLOCATE (v12, v2, vl14, v4, r_1, %, z)

!
WRITE (*, x)
WRITE (%,) "##### Done #####"
WRITE (x, x)
_/
END PROGRAM my_prog

22

Chapter 5. Usage

CHAPTER 6

Re-distribution of this library

6.1 Contain Komega in your program

Kw library is distributed with the Lesser General Public License (LGPL). It is summarized as follows:

e Kw can be freely distributed, modified, copied and pasted, in a private program (in the research group, co-
workers, etc.).

* For the released program (open-source, free, commercial software etc.):

— When you contain the source-code of Kw (either as is and modified) in the distributed source code of your
program, please distribute your program with LGPL/GPL.

— If you do not include the source-code of Kw (just call it), you can freely distribute your program with any
licenses.

— If you distribute a binary file which is statically linked to Kw library, please use LGPL/GPL. However, if
you distribute a binary file which is dynamically linked to K w library (therefore K w itself is not contained),
you can freely distribute your binary file with any licenses.

6.2 Build Komega without Autoconf

In this package, Kw is built with Autotools (Autoconf, Automake, Libtool). If you do not want to use Autotools for
your distributed program with Kw source, you can use the following simple Makefile (please care about TAB).

F90 = gfortran

FFLAGS = —fopenmp —-g -02 #-D_ MPI -D_ NO_ZDOT -D__ KOMEGA_THREAD
.SUFFIXES :

.SUFFIXES : .o .F90

OBJS = \

komega_cg_c.
komega_cg_r.
komega_cocg.
komega_bicg.
komega_math.
komega_vals.

~

o
o
o
o
o
o

all:libkomega.a

libkomega.a:$ (OBJS)

23

Kw Documentation, Release 2.0.0

ar cr libkomega.a $(OBJS)

.F90.0:
$(F90)

clean:

-c $< $(FFLAGS)

rm —-f *.0 *.a *.mod

komega_cg_c.
komega_cg_c.
komega_cg_r.
komega_cg_r.
komega_cocg.
komega_cocg.
komega_bicg.
komega_bicg.
komega_math.

Preprocessor macros __ MPTI,

o
o
o
o
o:
o
o
o
o

:komega_math.
:komega_vals.
:komega_math.
rkomega_vals.
komega_math.
:komega_vals.
:komega_math.
:komega_vals.
:komega_vals.

O 0 O 0 O O 0 0 O

NO_ZDOT, and __ KOMEGA_THREAD correspond to —--with-mpi=yes,

-—disable-zdot, and ——enable-thread of the options of configure, respectively.

6.3 Lesser General Public License

© 2016- The University of Tokyo. All rights reserved.

This software is developed under the support of
“Project for advancement of software usability in materials science” by The
Institute for Solid State Physics, The University of Tokyo.

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details, See ‘COPYING.LESSER’ in the root directory of this library.

24 Chapter 6. Re-distribution of this library

CHAPTER 7

Contact

If you have any comments, questions, bug reports etc. about this library, please contact to the main developer (Mitsuaki
Kawamura) by sending the e-mail (the address is shown below).

mkawamura_at_issp.u-tokyo.ac. jp

Please change _at_ into @, when you will send the e-mail.

25

CHAPTER 8

Reference

[1] A. Frommer, Computing 70, 87 (2003).
[2] S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, J. Phys. Soc. Jpn. 77, 114713 (2008).

26

	Overview
	Algorithm
	Shifted BiCG method with seed switching technique
	Shifted COCG method with seed switching technique
	Shifted CG method with seed switching technique

	Schematic workflow of this library
	The schematic workflow of shifted BiCG library
	The schematic workflow of shifted COCG library
	The schematic workflow of shifted CG library

	Install
	Overall procedure
	Options for configure

	Usage
	Details of each routines
	Sample codes for using shifted BiCG library

	Re-distribution of this library
	Contain Komega in your program
	Build Komega without Autoconf
	Lesser General Public License

	Contact
	Reference

