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CHAPTER

ONE

TUTORIAL FOR CALCULATIONS AT ZERO TEMPERATURE

1.1 Spin 1/2 Dimer

Let’s solve the following spin 1/2 dimer model (2-site Heisenberg model).

𝐻 = 𝐽S0 · S1 (1.1)

The input file (samples/tutorial_1.1/stan1.in) is as follows:

L=2
model = "Spin"
method = "FullDiag"
lattice = "chain"
J = 0.5
2Sz = 0
2S = 1

It should be noted that the L=2 chain has two sites connected by two bonds with each other, and so we let J=0.5 to
simulate the dimer model with 𝐽 = 1.

You can execute HPhi as follows

HPhi -s stan.in

1.1.1 Check the energy

Please check whether the energies are given as follows.

𝐸min = −3/4 (singlet)

𝐸max = 1/4 (triplet)

1.1.2 Check S dependence

By changing 2S=1 in stan.in, you can treat spin-S dimer (eg. 2S=2 means S=1, see samples/tutorial_1.1/
stan2.in). Please check whether the energies are given as follows.

𝐸min = −𝑆(𝑆 + 1)

𝐸max = 𝑆2

1
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1.1.3 Add magnetic field H

By adding H in stan.in, selecting model as “SpinGC”, and deleting “2Sz=0” you can examine the effects of the
magnetic field in the dimer model. An example of the input file (samples/tutorial_1.1/stan3.in) is as
follows:

L=2
model = "SpinGC"
method = "FullDiag"
lattice = "chain"
J = 0.5
2S = 1
H = 2

Please check whether the ground state becomes polarized state (Sz=1).

1.1.4 Try to use Lanczos method

By selecting method as “Lanczos” you can perform the Lanczos calculations. An example of the input file (samples/
tutorial_1.1/stan4.in) is as follows:

L=2
model = "SpinGC"
method = "Lanczos"
lattice = "chain"
J = 0.5
2S = 1
H = 2

Please check the Lanczos method reproduces the energy (energy is output in *output/zvo_energy.dat ).

This is just a pedagogical example. By changing H = 20 (very large magnetic field), please examine what will
happen. This calculation may fail! Please think why the Lanczos method fails for large magnetic field.

1.1.5 Try to use LOBCG method

LOBCG is locally optimal block conjugate gradient method. By selecting method as “CG”, you can perform the
LOBCG calculations. An example of the input file (samples/tutorial_1.1/stan5a.in) is as follows:

L=2
model = "SpinGC"
method = "CG"
lattice = "chain"
J = 0.5
2S = 1
H = 2

Please check the LOBCG method reproduces the energy (energy is output in *output/zvo_energy.dat ).

This is just a pedagogical example. By changing H = 20 (very large magnetic field), please examine what will
happen. In contrast to the Lanczos method, LOBCG will work well ! Please think why the LOBCG method works
well for the large magnetic field.

Please also check the excited states can be correctly obtained by using LOBCG method. (Please compare the energies
obtained by the full diagonalization.) An example of the input file (samples/tutorial_1.1/stan5b.in) is
as follows:

2 Chapter 1. Tutorial for calculations at zero temperature
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L=2
model = "SpinGC"
method = "CG"
lattice = "chain"
J = 0.5
2S = 1
H = 2
exct = 4

Here, exct represents the number of excited states, which are obtained by the LOBCG method.

1.2 Hubbard Dimer

Let’s solve the following the Hubbard dimer model.

𝐻 = −𝑡
∑︁
𝜎

(𝑐†0𝜎𝑐1𝜎 + H.c.) + 𝑈(𝑛0↑𝑛0↓ + 𝑛1↑𝑛1↓) (1.2)

The input file (samples/tutorial_1.2/stan1.in) is as follows:

model = "Hubbard"
method = "FullDiag"
lattice = "chain"
L=2
t = -0.5
U = 4
2Sz = 0
nelec = 2

You can execute HPhi as follows

HPhi -s stan.in

1.2.1 Check the energy

For the Hubbard dimer at half filling with total Sz=0, energies are given as follows:

𝐸 = 0, 𝑈, 𝑈
2 × (1 ±

√︀
(1 + (4𝑡/𝑈)2))

For example, by taking 𝑈 = 4, 𝑡 = −1, the energies are given as follows:

𝐸 = −0.828427, 0, 4, 4.828427

It is note that simple mathematical calculations can be done using:

bc -l

on the terminal.

1.2. Hubbard Dimer 3
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1.2.2 Try to use LOBCG method

The input file (samples/tutorial_1.2/stan2.in) is as follows:

model = "Hubbard"
method = "CG"
lattice = "chain"
L=2
t = -0.5
U = 4
2Sz = 0
nelec = 2
exct = 4

Please check whether LOBCG method correctly reproduces the energies including the excited states.

1.3 Hubbard Trimer

Let’s solve the following the Hubbard trimer model (Hubbard model on a triangle).

𝐻 = −𝑡
∑︁
𝜎

(𝑐†0𝜎𝑐1𝜎 + 𝑐†1𝜎𝑐2𝜎 + 𝑐†2𝜎𝑐0𝜎 + H.c.) + 𝑈
∑︁
𝑖

(𝑛𝑖↑𝑛𝑖↓) (1.3)

The input file (samples/tutorial_1.3/stan1.in) is as follows:

model = "Hubbard"
method = "FullDiag"
lattice = "chain"
L = 3
t = -1
U = 4
2Sz = 0
nelec = 2

Note that the filling is not half filling.

You can execute HPhi as follows

HPhi -s stan.in

1.3.1 Ferromagnetic ground state

For the Hubbard model on a triangle with one hole, it is known that the perfect ferromagnetism becomes ground
state. Please check that.

If you want know the mechanism of the ferromagnetism, please see Hal Tasaki, Kotai Butsuri, Vol. 31, 173 (1996).
This is one of the simplest example of the Nagaoka’s ferromagnetism.

4 Chapter 1. Tutorial for calculations at zero temperature
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1.3.2 Effects of transfer integrals

Please the effects of the sign of the transfer integrals. For example, what happens if you take t = 1 ?

Another interesting example is by changing the transfer integrals between site 0 and site 2. Following an example of
the trans.def

========================
NTransfer 12
========================
========i_j_s_tijs======
========================

1 0 0 0 -1.000000000000000 0.000000000000000
0 0 1 0 -1.000000000000000 0.000000000000000
1 1 0 1 -1.000000000000000 0.000000000000000
0 1 1 1 -1.000000000000000 0.000000000000000
2 0 0 0 -2.000000000000000 0.000000000000000
0 0 2 0 -2.000000000000000 0.000000000000000
2 1 0 1 -2.000000000000000 0.000000000000000
0 1 2 1 -2.000000000000000 0.000000000000000
2 0 1 0 -1.000000000000000 0.000000000000000
1 0 2 0 -1.000000000000000 0.000000000000000
2 1 1 1 -1.000000000000000 0.000000000000000
1 1 2 1 -1.000000000000000 0.000000000000000

Using this transfer integrals, please examine the U dependence of the ground state. Is there phase transition between
singlet ground state and the perfect ferromagnetism ?

1.4 Heisenberg chain (zero temperature)

Let’s solve the following spin 1/2 Heisenberg model on the chain.

𝐻 = 𝐽
∑︁
⟨𝑖,𝑗⟩

S𝑖 · S𝑗 (1.4)

The input file (samples/tutorial_1.4/stan1.in) for 16-site Heisenberg model is as follows:

L = 16
model = "Spin"
method = "CG"
lattice = "chain"
J = 1
2Sz = 0
2S = 1

You can execute HPhi as follows

HPhi -s stan.in

1.4. Heisenberg chain (zero temperature) 5
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1.4.1 Check the energy

Please check whether the energies are given as follows.

𝐸0 = −7.142296 (1.5)

1.4.2 Obtaining the excited state

By adding exct=2, you can obtain the 2 low-energy states (samples/tutorial_1.4/stan2.in). Please check
the energies.

𝐸0 = −7.142296

𝐸1 = −6.872107
(1.6)

1.4.3 Size dependence of the spin gap

The spin gap at finite system size is defined as ∆ = 𝐸1 − 𝐸0. For 16-site, we obtain ∆ ∼ 0.2701.

Please examine how ∆ behaves as a function of system size L (samples/tutorial_1.4/stan3.in for L=20).
(available system size on PC may be L=24)

1.4.4 Haldane gap

By performing a similar calculations for S=1 system, please examine how ∆ behaves as a function of system size L
(samples/tutorial_1.4/stan4.in). It is known that the finite spin gap exists even in the thermodynamic
limit (𝐿 = ∞). This spin gap is often called Haldane gap.

1.5 J1-J2 Heisenberg model

Here, we solve the 𝐽1 − 𝐽2 Heisenberg model on the square lattice, which is a canonical example of the frustrated
magnets. Its Hamiltonian is defined as

ℋ = 𝐽1
∑︁
⟨𝑖,𝑗⟩

S𝑖 · S𝑗 + 𝐽2
∑︁

⟨⟨𝑖,𝑗⟩⟩

S𝑖 · S𝑗 , (1.7)

where 𝐽1 (𝐽2) represents the nearest (next-nearest) neighbor interactions.

An input file (samples/tutorial_1.5/stan1.in) for treating 𝐽1 − 𝐽2 Heisenberg model is given as

model = "Spin"
method = "CG"
lattice = "square"
L = 4
W = 4
J = 1
J' = 1
2S = 1
2Sz = 0
exct = 4

Here, J (J’) represents 𝐽1 (𝐽2).

6 Chapter 1. Tutorial for calculations at zero temperature
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1.5.1 Calculations of spin structure factors for ground state

First, we calculate the spin structure factors, which are defined as

𝑆(q) =
1

𝑁s

∑︁
𝑖,𝑗

S𝑖 · S𝑗 (1.8)

To calculate 𝑆(q), it is necessary to prepare a proper input file for two-body Green functions. By using a python script
MakeGreen.py (samples/tutorial_1.5/MakeGreen.py), you can generate greentwo.def for calculating
𝑆(q). To use MakeGreen.py , an input file for specifying lattice geometry (input.txt, samples/tutorial_1.
5/input.txt) is necessary, whose form is given as follows

Lx 4
Ly 4
Lz 1
orb_num 1

Here, Lx (orb_num) represents the length of the x direction (number of orbitals).

By using a python script CalcSq.py (samples/tutorial_1.5/CalcSq.py), you can calculate 𝑆(q) from out-
put/zvo_cisajscktalt_eigen0.dat.

Procedure for calculating and visualizing 𝑆(q) is given as follows ::

1. HPhi -sdrt stan.in

2. pyhton3 MakeGreen.py (input.txt is necessary)

3. HPhi -e namelist.def

4. python3 CalcSq.py (input.txt is necessary)

5. You can obtain Sq_eigen0.dat !!

6. plot “Sq_eigen0.dat” u 1:2:3 (using gnuplot)

Following the procedure, please see how 𝑆(q) changes by changing J’. As an example, we show 𝑆(q) for J1/J2=0 and
1 below.

 0  0.5  1  1.5  2  2.5  3  3.5  4
Lx*kx/(2*pi)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Ly*ky/(2*pi)
 0

 0.5

 1

 1.5

 2

 2.5

 3

S(q)

 0  0.5  1  1.5  2  2.5  3  3.5  4
Lx*kx/(2*pi)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Ly*ky/(2*pi)
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

S(q)

J2/J1 = 0 J2/J1 = 1.0

1.5. J1-J2 Heisenberg model 7
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1.5.2 Calculations of spin structure factors for excited states

By changing exct in stan.in, you can obtain several excited states. For those excited states, by changing max_num=1
in CalcSq.py as, for example, max_num=4, you can obtain 𝑆(q) for the excited states. As a practice for editing file,
please try to edit CalcSq.py manually (open CalcSq.py, finding variable max_num =1, and changing max_num = 4).

Please see how 𝑆(q) in the excited states changes by changing J’. For example, please check what is the nature of the
first excited state J’=0,0.5, and 1.

1.6 How to use Expert mode

If you prepare input files, you can perform calculations for arbitrary Hamiltonians with any one-body potentials and
the two-body interactions. By taking spin 1/2 system as an example, we explain how to prepare input files. For spin
1/2 system, we prepare simple python scripts (samples/tutorial_1.6/MakeDef.py) that can generate the
input files for general Hamiltonians, which are defined as

ℋ =
∑︁
𝑖,𝑗

𝐽𝛼,𝛽
𝑖,𝑗 S𝛼

𝑖 S
𝛽
𝑗 . (1.9)

Note tat samples/tutorial_1.6/read.py and samples/tutorial_1.6/hphi_io.py are necessary
for MakeDef.py. To use MakeDef.py, it is necessary to prepare two input files, input.txt and pair.txt (examples of
them are available in samples/tutorial_1.6 ).

In input.txt, two parameters Ns (number of sites) and exct (number of excited states) are specified.

Below is an example of input.txt for 2 site Heisenberg model

Ns 2
exct 2

In pair.txt, you specify the interaction terms in the form

𝑖 𝑗 𝛼 𝛽 𝐽𝛼,𝛽
𝑖,𝑗 (1.10)

Below is an example of pair.txt for 2 site Heisenberg model

0 1 x x 0.5
0 1 y y 0.5
0 1 z z 0.5

You can also specify the non-diagonal interaction as

0 1 x x 0.5
0 1 y y 0.5
0 1 z z 0.5
0 1 x y 0.5
0 1 x z 0.5
0 1 y z 0.5

Note that interaction terms must be specified for (x,y), (x,z), (y,z) and (y,x), (z,x), (z,y) cannot be used.

8 Chapter 1. Tutorial for calculations at zero temperature
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1.6.1 Exercise

By changing pair.txt and input.txt, you can treat your favorite models. For example, please try to make input files for
the Kitaev model on the honeycomb lattice. We note that the Kitaev model can be used in the Standard mode.

Another example is the XY model on the chain. In the standard model, you can also treat XY model by omitting
“CoulombInter coulombinter.def” and “Hund hund.def” in namelist.def.

1.7 Use eigenvectors

In this tutorial, we will study how to read the eigenvectors. In the standard mode, setting EigenVecIO = "Out"
makes HPhi to write the calculated eigenvectors as output/zvo_eigenvec_[index]_rank_[rank].dat,
where [index] is the index of the states (e.g., the ground state has [index] = 0) and [rank] is the rank of the
process. In the MPI parallelization with Npara processes, HPhi splits the whole Hilbert space into the Npara blocks
and each process treats one of them. The file format is described in the reference manual . For example, the following
python function (samples/tutorial-1.7/read_gs.py) reads the vector:

def read_gs(*, index=0, rank=0):
import numpy as np
from os.path import join
from struct import unpack

filename = join("output",
"zvo_eigenvec_{}_rank_{}.dat".format(index,

rank))
with open(filename, "rb") as f:

f.read(4)
nelems = unpack("L", f.read(8))[0]
ret = np.zeros(nelems, dtype=np.complex)
f.read(16)
for i in range(nelems):

re = unpack("d", f.read(8))[0]
im = unpack("d", f.read(8))[0]
ret[i] = np.complex(re, im)

return ret

1.7.1 Exercise

Check the orthogonality of the eigenvectors calculated by the LOBCG method by calculating the norm and the inner
product of some of the eigenvectors.

Hint : In the standard mode, the exct keyword controls the number of eigenvectors to be calculated.

Solution : See samples/tutorial-1.7/solution.py. This script firstly generates the input file for calculat-
ing the ground state and the first excited state of the 𝐿 = 8 AFH chain with the LOBCG method, next invokes HPhi,
then reads the vectors, and finally calculates the norms and the inner product.

1.7. Use eigenvectors 9
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CHAPTER

TWO

TUTORIAL FOR FINITE-TEMPERATURE CALCULATIONS

2.1 Heisenberg chain (finite temperatures)

Here, we study the finite-temperature properties of spin 1/2 Heisenberg model on the chain.

𝐻 = 𝐽
∑︁
⟨𝑖,𝑗⟩

S𝑖 · S𝑗 (2.1)

The input file (samples/tutorial_2.1/stan1.in) for 12-site Heisenberg model is as follows:

L = 12
model = "Spin"
method = "FullDiag"
lattice = "chain"
J = 1
2Sz = 0
2S = 1

You can execute HPhi as follows

HPhi -s stan.in

2.1.1 Full diagonalization

After executing the full diagonalization, all the eigen energies are output in output/Eiegenvalue.dat. By using the
python script (``samples/tutorial_2.1/Finite.py``), you can obtain the temperature dependence of the energy and the
specific heat.

You can execute Finite.py as follows

python3 Finite.py

Then, you can obtain FullDiag.dat as follows

0.000100 -5.3873909174000003 0.0000000000000000
0.000150 -5.3873909174000003 0.0000000000000000
0.000200 -5.3873909174000003 0.0000000000000000
0.000250 -5.3873909174000003 0.0000000000000000
0.000300 -5.3873909174000003 0.0000000000000000

The 1st row represents temperature, 2nd row represents the energy, and the 3rd row represents the specific heat defined
by 𝐶 = (⟨𝐸2⟩ − ⟨𝐸⟩2)/𝑇 2.

11
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2.1.2 TPQ method (Sz=0)

By selecting method as “TPQ”, you can perform the finite-temperature calculations using the TPQ method.

The input file (samples/tutorial_2.1/stan2.in) for 12-site Heisenberg model is as follows:

L = 12
model = "Spin"
method = "TPQ"
lattice = "chain"
J = 1
2Sz = 0
2S = 1

After performing the TPQ calculations, results are output in output/SS_rand*.dat. By using the python script (``sam-
ples/tutorial_2.1/AveSSrand.py``), you can obtain the temperature dependence of physical quantities such as the
energy and the specific heat.

Then, you can obtain ave_TPQ.dat as follows

# temperature T err of T Energy E error of E specific heat C err of C
30.17747 0.02022 -0.35489 0.04044 0.00264 8.1126-05
15.10875 0.01016 -0.43500 0.04065 0.01068 0.0003182
10.08598 0.00681 -0.51592 0.04086 0.02423 0.0007030
7.574693 0.00513 -0.59754 0.04106 0.04335 0.0012311
6.067978 0.00412 -0.67978 0.04123 0.06808 0.0019053

Using gnuplot, you can directly compare the two results

plot "FullDiag.dat" u 1:2 w l,"ave_TPQ.dat" u 1:3:4 w e

You can see the following output image.

-6

-5

-4

-3

-2

-1

 0

 0.0001  0.001  0.01  0.1  1  10  100

E/
J

T/J
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2.1.3 TPQ method (susceptibility)

By using the TPQ method, it is also possible to calculate the spin susceptibility by performing the calculations for all
Sz sectors.

The input file (samples/tutorial_2.1/stan3.in) for 12-site Heisenberg model is as follows:

L = 12
model = "SpinGC"
method = "TPQ"
lattice = "chain"
J = 1
2S = 1

Here, note that “model = Spin” is changed to “model = SpinGC” and “Sz = 0” is omitted.

After performing the TPQ calculations, temperature dependence of several physical quantities such as num-
ber of particel N and total Sz are output in output/Flct_rand*.dat. By using the python script (``sam-
ples/tutorial_2.1/AveFlct.py``), you can obtain the temperature dependence of physical quantities such as the energy
and the spin susceptibility 𝜒. Note that 𝜒 is defined as

𝜒 =
⟨𝑚2

𝑧⟩ − ⟨𝑚𝑧⟩2

𝑇

𝑚𝑧 =
∑︁
𝑖

𝑆𝑧
𝑖 .

(2.2)

Then, you can obtain ave_Flct.dat as follows

# temperature T err of T m_z error of m_z susceptibility chi err of chi
13.5876 0.00695 -0.00688 0.00955 0.21243 0.00184
6.83615 0.00373 -0.00783 0.01067 0.40632 0.00414
4.58603 0.00278 -0.00894 0.01251 0.58234 0.00694
3.46113 0.00239 -0.01023 0.01474 0.74129 0.01021
2.78624 0.00220 -0.01171 0.01713 0.88407 0.01383

Using gnuplot, you can see the temperature dependence of 𝜒

se log x
se colors classic
se xlabel "T/J"
se ylabel "chi"
plot "ave_Flct.dat" u 1:5:6 w e lc rgb "#FFBBBB" ps 1 pt 6,\

"ave_Flct.dat" u 1:5 w lp lt 1 ps 1 pt 6

You can see the following output image.

2.1. Heisenberg chain (finite temperatures) 13
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2.2 Kitaev cluster (finite temperatures)

In this subsection, we will examine the convergence of the sampling in the TPQ method. Here, we study a 12 site clus-
ter of a typical magnetically frustrated magnet, the Kitaev model, whose heat capacity shows non-trivial temperature
dependence.

The Kitaev model is a kind of the Ising model with bond-orientation dependent Ising interactions as follows:

𝐻 = 𝐾
∑︁

𝛾=𝑥,𝑦,𝑧

∑︁
⟨𝑖,𝑗⟩𝛾

𝑆𝛾
𝑖 𝑆

𝛾
𝑗 , (2.3)

where the index 𝛾 = 𝑥, 𝑦, 𝑧 specifies the bond direction of the nearest-neighbor site pair ⟨𝑖, 𝑗⟩𝛾 .

2.2.1 Lattice structure and eigen states of the Kitaev cluster

A 12 site cluster of the Kitaev model is generated by the following standard input file (samples/tutorial_2.2/
stan1.in):

W = 2
L = 3
model = "SpinGC"
method = "CG"
lattice = "Honeycomb"
J0x = -1.0
J0y = 0.0
J0z = 0.0
J1x = 0.0
J1y = -1.0
J1z = 0.0
J2x = 0.0

(continues on next page)
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(continued from previous page)

J2y = 0.0
J2z = -1.0
2S=1
exct = 8

You can visualize the cluster by plotting lattice.gp as shown in the figure below. Here the 𝑥 bond (⟨𝑖, 𝑗⟩𝑥) connects,
for example, the 0th and 1st sites (𝑖 = 0, 𝑗 = 1), while the 𝑦 bond (⟨𝑖, 𝑗⟩𝑦) connects, for example, the 1st and 2nd sites
(𝑖 = 1, 𝑗 = 2). The :math: z bond (⟨𝑖, 𝑗⟩𝑧) connects the 1st and 4th sites for example (𝑖 = 1, 𝑗 = 4).

By using the above standard input, we will obtain zvo_energy.dat in your output directory:

State 0
Energy -2.4500706750607750
Doublon 0.0000000000000000
Sz 0.0000000000333962

State 1
Energy -2.4500706750607750
Doublon 0.0000000000000000
Sz -0.0000000000081852

(continues on next page)
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(continued from previous page)

State 2
Energy -2.4500706750607804
Doublon 0.0000000000000000
Sz -0.0000000000025177

State 3
Energy -2.4500706750607777
Doublon 0.0000000000000000
Sz -0.0000000000018603

State 4
Energy -2.3427788601414870
Doublon 0.0000000000000000
Sz 0.0000000000982415

State 5
Energy -2.3427788601414870
Doublon 0.0000000000000000
Sz -0.0000000000217449

State 6
Energy -2.3427788601414830
Doublon 0.0000000000000000
Sz -0.0000000000488295

State 7
Energy -2.3427788601414847
Doublon 0.0000000000000000
Sz 0.0000000001057668

State 8
Energy -2.3237385032276898
Doublon 0.0000000000000000
Sz -0.0647000851410590

State 9
Energy -2.3237385032277440
Doublon 0.0000000000000000
Sz 0.4412235001577003

2.2.2 Convergence of the microcanonical TPQ

Then, we will examine the convergence of the microcanonical TPQ (mTPQ) method introduced by S. Sugiura and A.
Shimizu, which is implemented in H Φ for method = “TPQ”.

By using the following standard input file, you can generate 64 mTPQ samples (samples/tutorial_2.2/
stan2a.in):

W = 2
L = 3
model = "SpinGC"
method = "TPQ"
lattice = "Honeycomb"
J0x = -1.0
J0y = 0.0

(continues on next page)
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(continued from previous page)

J0z = 0.0
J1x = 0.0
J1y = -1.0
J1z = 0.0
J2x = 0.0
J2y = 0.0
J2z = -1.0
2S=1
Lanczos_max = 3000
LargeValue = 4.0
NumAve = 64

Here, you may use larger Lanczos_max and LargeValue than those in the default setting.

Then, you can obtain the above temperature dependence of the heat capacity. The average of C over the 64 mTPQ
samples is shown by the blue curve while C obtained by the full diagonalization is shown by the red curve. The
grey belt shows the standard deviation

√
𝜎2, and the cyan belt shows the standard error 𝜎𝐸 =

√︀
𝜎2/𝑁sample, where

𝑁sample is the sample size (𝑁sample = 64). Although the systematic errors in the estimation of temperatures exist in
the mTPQ formalism, the exact hat capacity (the red curve in the above figure) is within the random sample distribution
(estimated by

√
𝜎2 and shown by the grey belt).

For obtaining the results by the full diagonalization, please use the following input file ((samples/tutorial_2.
2/stan2b.in))

W=2
L=3
model = "SpinGC"
method = "fulldiag"
lattice = "Honeycomb"
J0x = -1.0
J0y = 0.0
J0z = 0.0
J1x = 0.0

(continues on next page)
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(continued from previous page)

J1y = -1.0
J1z = 0.0
J2x = 0.0
J2y = 0.0
J2z = -1.0
2S=1

Note that it takes several minute because the dimension of matrix is large (dimension is 4900 ). As in the Heisenberg
chain, by using the python script ((``samples/tutorial_2.2/Finite.py``)), you can obtain the temperature dependence
of the energy and the specific heat.

18 Chapter 2. Tutorial for finite-temperature calculations



CHAPTER

THREE

TUTORIALS FOR REAL-TIME EVOLUTION

3.1 U quench in Hubbard model

Let’s solve the following U quench in 2D Hubbard model at half filling.

𝐻(𝜏) = −𝑡
∑︁

⟨𝑖,𝑗⟩,𝜎

(𝑐†𝑖𝜎𝑐𝑗𝜎 + H.c.) + 𝑈
∑︁
𝑖

𝑛𝑖↑𝑛𝑖↓ + 𝑈quenchℎ(𝜏)
∑︁
𝑖

𝑛𝑖↑𝑛𝑖↓ (3.1)

ℎ(𝜏) means the step function. The input files (samples/tutorial_3.1/stan1.in and samples/
tutorial_3.1/stan2.in) are as follows

stan1.in

model = "Hubbard"
method = "CG"
lattice = "square"
a0W = 2
a0L = 2
a1W = 2
a1L = -2
2Sz = 0
t = 1.0
U = 4.0
nelec = 8
EigenvecIO = "out"

stan2.in

model = "Hubbard"
method = "Time-Evolution"
lattice = "square"
a0W = 2
a0L = 2
a1W = 2
a1L = -2
2Sz = 0
t = 1.0
U = 4.0
nelec = 8
PumpType = "Quench"
Uquench = -8
EigenvecIO = "in"
dt = 0.01
lanczos_max = 1000

19
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You can execute HPhi as follows

HPhi -s stan1.in
HPhi -s stan2.in

3.1.1 Check norm and energy

Unitary dynamics of the norm of a wavefunction should be conserved during the real-time evolution. Using gnuplot,
check the dynamics of the norm for this problem

plot "output/Norm.dat" u 1:2 w l

In sudden U-quench simulations, the total energy should be conserved for 𝜏 > 0. Using gnuplot, check whether the
energy is conserved during the real-time evolution

plot "output/SS.dat" u 1:2 w l

3.1.2 Dynamics of double occupation

The double occupation 𝐷 =
∑︀

𝑖⟨𝑛𝑖↑𝑛𝑖↓⟩ is not conserved because [𝐷,𝐻] ̸= 0. You can check the dynamics of 𝐷 by
executing the following command on gnuplot

plot "output/SS.dat" u 1:4 w l

3.2 Dynamical phase transition in 1D transverse-field Ising model

Dynamical phase transition (DPT) is a phase transition due to nonequilibrium process such as sudden quench. In this
section, we introduce the DPT in 1D transverse Ising model, which is one of the famous examples for the DPT. The
details are found in this paper (M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013)).

𝐻 = 𝐽
∑︁
⟨𝑖,𝑗⟩

𝑆𝑧
𝑖 𝑆

𝑧
𝑗 + Γ

∑︁
𝑖

𝑆𝑥
𝑖 (3.2)

3.2.1 Ground state

First, you need to obtain the initial state for simulations of the real-time dynamics. Please make the following input
file (samples/tutorial_3.2/stan1.in)

model = "SpinGC"
method = "CG"
lattice = "chain"
L = 12
Jz = -1.0
Gamma = 0.1
h = 1e-5
EigenvecIO = "out"

and run the following command
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HPhi -s stan1.in

Check the total magnetization along 𝑧-direction 𝑀𝑧 =
∑︀

𝑖⟨𝑆𝑧
𝑖 ⟩ in “output/zvo_energy.dat”.

Question: If a longitudinal magnetic field ℎ in stan1.in becomes 0, what happens?

3.2.2 Γ quench

After obtaining the ground state, you can perform simulations for Γ quench in the 1D transverse-field Ising model.
Make the following input file (samples/tutorial_3.1/stan2.in)

model = "SpinGC"
method = "Time-Evolution"
lattice = "chain"
L = 12
Jz = -1.0
Gamma = 0.2
h = 1e-5
EigenvecIO = "in"
dt = 0.01
lanczos_max = 1000

In this case, Γ quench from 0.1 to 0.2 will be performed by executing the following command

HPhi -s stan2.in

Now you can check the real-time evolution of 𝑀𝑧 in “output/Flct.dat”. The result is plotted by executing the following
command on gnuplot

gnuplot
gnuplot> set xlabel "time t"
gnuplot> set ylabel "Magnetization per site |M_z/L|"
gnuplot> p "output/Flct.dat" u 1:(abs($6/12)) w l tit "Gamma=0.1 -> 0.2"

One of the features of DPT in this model is that cusp structures in the dynamics of 𝑀𝑧 appears at the same intervals.
The following figure is an example for several results for Γ quench. You can see the cusp structure for Γ > 0.5.

3.2. Dynamical phase transition in 1D transverse-field Ising model 21
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FOUR

TUTORIAL FOR CALCULATIONS OF DYNAMICAL PROPERTIES

4.1 Dynamical spin structure factor

Let’s solve the following Hubbard model on the square lattice.

𝐻 = −𝑡
∑︁

⟨𝑖,𝑗⟩,𝜎

(𝑐†𝑖𝜎𝑐𝑗𝜎 + H.c.) + 𝑈
∑︁
𝑖

𝑛𝑖↑𝑛𝑖↓ (4.1)

The input files (samples/tutorial_4.1/stan1.in and samples/tutorial_4.1/stan2.in) for 8-site
Hubbard model are as follows

stan1.in

a0W = 2
a0L = 2
a1W = -2
a1L = 2
model = "hubbard"
method = "CG"
lattice = "square"
t = 1.0
t' = 0.5
U = 4.0
2Sz = 0
nelec = 8
EigenvecIO = "out"

stan2.in

a0W = 2
a0L = 2
a1W = -2
a1L = 2
model = "hubbard"
method = "CG"
lattice = "square"
t = 1.0
t' = 0.5
U = 4.0
2Sz = 0
nelec = 8
LanczosEPS = 8
CalcSpec = "Normal"

(continues on next page)
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(continued from previous page)

SpectrumType = "SzSz"
SpectrumQW = 0.5
SpectrumQL = 0.5
OmegaMin = -10.0
OmegaMax = 20.0
OmegaIM = 0.2
OmegaOrg = 10.0

You can execute HPhi as follows

HPhi -s stan1.in
HPhi -s stan2.in

After finishing calculations, the spectrum 𝐺𝑆𝑧𝑆𝑧 (Q ≡ (𝜋, 𝜋), 𝜔) = ⟨𝑆𝑧(−Q) [𝐻 − 𝜔 − 𝜔0 + 𝑖𝜂]
−1

𝑆𝑧(Q)⟩ is out-
putted in output/zvo_DynamicalGreen.dat. Here, 𝑆𝑧(Q) =

∑︀
𝑖 𝑒

𝑖Q·r𝑖𝑆𝑖
𝑧 and the frequency 𝜔 moves from −10 to 10,

𝜔0 = 10, and 𝜂 is set as 0.2. You can check the result by executing the following command on gnuplot:

gnuplot
gnuplot> set xlabel "Energy"
gnuplot> set ylabel "G_{SzSz}(E)"
gnuplot> set xzeroaxis
gnuplot> plot "output/zvo_DynamicalGreen.dat" u 1:3 w l tit "Real", \
> "output/zvo_DynamicalGreen.dat" u 1:4 w l tit "Imaginary"

You can see the following output image.
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4.2 Hubbard chain (optical conductivity)

Here, we calculate the optical conductivity for the one-dimensional Hubbard model.

The optical conductivity 𝜎(𝜔) can be calculated from the current-current correlation 𝐼(𝜔, 𝜂), which is defined as

𝑗𝑥 = 𝑖
∑︁
𝑖,𝜎

(𝑐†r𝑖+e𝑥,𝜎𝑐r𝑖,𝜎 − 𝑐†r𝑖,𝜎𝑐r𝑖+e𝑥,𝜎),

𝐼(𝜔, 𝜂) = Im
[︁
⟨0|𝑗𝑥[𝐻 − (𝜔 − 𝐸0 − 𝑖𝜂)𝐼]−1𝑗𝑥|0⟩

]︁
,

(4.2)

where e𝑥 is the unit translational vector in the x direction. From this the regular part of the optical conductivity is
defined as

𝜎reg(𝜔) =
𝐼(𝜔, 𝜂) + 𝐼(−𝜔,−𝜂)

𝜔𝑁𝑠
, (4.3)

where 𝑁s is the number of sites.

An input file (samples/tutorial_4.2/stan1.in) for 6-site Hubbard model is as follows:

model = "Hubbard"
method = "CG"
lattice = "chain"
L = 6
t = 1
U = 10
2Sz = 0
nelec = 6
exct = 1
EigenVecIO = "out"

Scripts for calculating the optical conductivity are available at ``samples/tutorial_4.2/``.

By performing the all-in-one script (All.sh),

sh ./All.sh

you can obtain optical.dat. Note that samples/tutorial_4.2/OpticalSpectrum.
py,``samples/tutorial_4.1/lattice.py``, samples/tutorial_4.2/lattice.py, and samples/
tutorial_4.2/input.txt are necessary.

A way for plotting optical.dat is as follows

plot "optical.dat" u 1:(-($4+$8)/$1) w l

4.3 Spectrum calculation for 12-site one-dimeinsional Heisenberg
chain model.

The Hamiltonian is given by

𝐻 = 𝐽

11∑︁
𝑖=0

S𝑖 · S𝑖+1, (4.4)

where

S0 = S12. (4.5)

4.2. Hubbard chain (optical conductivity) 25
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The spectrum function can be calculated by following steps.

1. Calculate the ground state.

2. Define excitation operators in the pair.def file.

3. Calculate spectrum function.

See the manual for details. To simply do above steps, we prepare the script file samples/
tutorial_4.3/spinchain_example.py .. in https://github.com/issp-center-dev/HPhi-gallery/tree/master/
Spin/HeisenbergSpectrum. In the following, we show the procedure to obtain the specrum function by using the
script file.

1. Execute the script file (spinchain_example.py)

$ python spinchain_example.py

2. Plot spectrum.dat by gnuplot.

$ gnuplot
$ set yrange [0:5]
$ set pm3d map
$ splot "./spectrum.dat" using 1:2:3

You can see the following figure, where horizontal and vertical axises correspond to the index of wave vector
and frequency, respectively.

"./spectrum.dat" using 1:2:3

 0  2  4  6  8  10  12
 0
 1
 2
 3
 4
 5

 0
 50
 100
 150
 200
 250
 300
 350
 400

kx L /2π

ω
/J

26 Chapter 4. Tutorial for calculations of dynamical properties

https://github.com/issp-center-dev/HPhi-gallery/tree/master/Spin/HeisenbergSpectrum
https://github.com/issp-center-dev/HPhi-gallery/tree/master/Spin/HeisenbergSpectrum

	Tutorial for calculations at zero temperature
	Spin 1/2 Dimer
	Check the energy
	Check S dependence
	Add magnetic field H
	Try to use Lanczos method
	Try to use LOBCG method

	Hubbard Dimer
	Check the energy
	Try to use LOBCG method

	Hubbard Trimer
	Ferromagnetic ground state
	Effects of transfer integrals

	Heisenberg chain (zero temperature)
	Check the energy
	Obtaining the excited state
	Size dependence of the spin gap
	Haldane gap

	J1-J2 Heisenberg model
	Calculations of spin structure factors for ground state
	Calculations of spin structure factors for excited states

	How to use Expert mode
	Exercise

	Use eigenvectors
	Exercise


	Tutorial for finite-temperature calculations
	Heisenberg chain (finite temperatures)
	Full diagonalization
	TPQ method (Sz=0)
	TPQ method (susceptibility)

	Kitaev cluster (finite temperatures)
	Lattice structure and eigen states of the Kitaev cluster
	Convergence of the microcanonical TPQ


	Tutorials for real-time evolution
	U quench in Hubbard model
	Check norm and energy
	Dynamics of double occupation

	Dynamical phase transition in 1D transverse-field Ising model
	Ground state
	 quench


	Tutorial for calculations of dynamical properties
	Dynamical spin structure factor
	Hubbard chain (optical conductivity)
	Spectrum calculation for 12-site one-dimeinsional Heisenberg chain model.


