abICSに実装されている手法の概要

ab Initio Configuration Sampling (abICS)講習会 2022/6/26

笠松秀輔

山形大学

E-mail: kasamatsu@sci.kj.yamagata-u.ac.jp

abInitio Configuration Sampling https://www.pasums.issp.u-tokyo.ac.jp/abics/

1

- Target : Disordered but non-random lattice systems
- Conventional methods and their drawbacks
 - Metropolis Monte Carlo algorithm
 - Cluster expansion
- abICS methodology
 - Replica exchange Monte Carlo algorithm
 - On-lattice neural network model
 - Active learning cycles
- Example calculations
 - Temperature-dependence of A/B site inversion in spinel oxides
 - Defect chemistry in proton conducting oxides

- Target : Disordered but non-random lattice systems
- Conventional methods and their drawbacks
 - Metropolis Monte Carlo algorithm
 - Cluster expansion
- abICS methodology
 - Replica exchange Monte Carlo algorithm
 - On-lattice neural network model
 - Active learning cycles
- Example calculations
 - Temperature-dependence of A/B site inversion in spinel oxides
 - Defect chemistry in proton conducting oxides

Target: Disordered but non-random lattice systems

- Short-range order in high-entropy alloys
 ✓SRO affects the mechanical properties[1]
 ✓SRO affects the magnetic properties[2]
 ✓…
- Complex oxides (battery materials, etc.)
 ✓lons and ionic defects with varying charges

CC-BY-3.0 Wang, *Entropy* 15, 5536-5548 (2013)

[1] R. Zhang et al., Nature 581, 283 (2020).
[2] T. Zuo et al., Acta Mater. 130, 10 (2017).

Thermodynamic importance sampling: Metropolis Monte Carlo algorithm

- \checkmark { x_i } becomes a "chain" of random samples that converges to the equilibrium ensemble at given T naturally considering configuration entropy
- ✓ Too slow at low temperature due to local minima trapping

5

$DFT \rightarrow Lightweight model ?$

Cluster expansion:

Expansion of the total configuration energy as a sum of contributions from "clusters"

$$E = V_0 + \sum_i V_i \sigma_i + \sum_{ij} V_{ij} \sigma_i \sigma_j + \sum_{ijk} V_{ijk} \sigma_i \sigma_j \sigma_k$$

Successful in few-component metallic alloys but difficult to apply to many component oxides due to **combinatorial explosion in the number of clusters**

- Long-range interactions
- Many-component systems
- Large relaxation

Jin Hyun Chang *et al., J. Phys.: Condens. Matter* **31** 325901 (2019) [CC-BY-3.0]

- Target : Disordered but non-random lattice systems
- Conventional methods and their drawbacks
 - Metropolis Monte Carlo algorithm
 - Cluster expansion
- abICS methodology
 - Replica exchange Monte Carlo algorithm
 - On-lattice neural network model
 - Active learning cycles
- Example calculations
 - Temperature-dependence of A/B site inversion in spinel oxides
 - Defect chemistry in proton conducting oxides

Replica Exchange Monte Carlo (RXMC) Method[*]

- 1. Prepare copies (replicas) of the system and perform Monte Carlo simulations at different temperatures
- 2. Perform swapping of temperatures at preset intervals:

 $p = \min(1, \exp[(E_i - E_j)(\beta_i - \beta_j)])$

 High-T replicas: global search
 Low-T replicas: local optimization
 Well-known in statistical physics (spin models) and classical molecular dynamics

[D. J. Earl and M. W. Deem, PCCP 7, 3910 (2005).]

[*] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. **65**, 1604 (1996) abICS version 1: thermodynamic sampling framework using DFT+RXMC

Direct combination with DFT

• Multilayered parallelism \rightarrow Massively parallel supercomputing

https://www.pasums.issp.u-tokyo.ac.jp/abics/

9

SK and O. Sugino, J. Phys. Condens. Matter 31, 085901 (2019)

Machine learning potentials (MLP)

- Fit first-principles energies and forces with a flexible ML model and accelerate FPMD simulations
- NNP (Behler & Parinello), GAP (Rappe), MTP (Shapeev), GNN, etc.
- O Structural relaxation possible
- O Can handle many-component systems
- \bigtriangleup Large amount of training data needed
- \triangle Relaxation calculations are necessary (cluster expansion is one-shot)

Benchmark on various MLPs : Y. Zhuo et al., J. Phys. Chem. A 2020, 124, 4, 731–745

Atomic Atomic Atomic Atomic environment neural nets energies coords. fingerprints \mathbf{R}_1 ΝN Total energy \mathbf{R}_2 G R NN: G 11

Our idea: On-lattice neural network model

 Adaptation of BP-type HDNNP[1, 2] Input: Configuration on ideal lattice without relaxation

Output: Total energy after relaxation

- Easier to train than continuous coordinate NNP
- One-shot calculation for relaxed energies

$$E_{\rm rel}(\vec{\sigma}) = \sum_{i}^{\rm atoms} {\rm NNP}_{t_i}^{\rm rel}(f[\vec{\sigma}_i^{R_{\rm c}}]) \text{ for } \vec{\sigma} \in \{\vec{\sigma}_{\rm lattice}\}$$

[1] J. Behler and M. Parinello, Phys. Rev. Lett. 98, 146401 (2007).[2] N. Artrith et al., Phys. Rev. B 96, 014112 (2017).

- Target : Disordered but non-random lattice systems
- Conventional methods and their drawbacks
 - Metropolis Monte Carlo algorithm
 - Cluster expansion
- abICS methodology
 - Replica exchange Monte Carlo algorithm
 - On-lattice neural network model
 - Active learning cycles

• Example calculations

- Temperature-dependence of A/B site inversion in spinel oxides
- Defect chemistry in proton conducting oxides

Notes on model size and computational resources

- $\checkmark \mathsf{DFT}$ relaxations comprise the majority of total computation
- ✓Training for MgAl₂O₄ example with 192 cations (448 atoms) required about 3 cycles with 300 DFT relaxations each
- ✓DFT relaxations on 300 configurations (VASP GGA-PBE calc. with PW cutoff of 400 eV) takes only ~2 hours when using 144-node queue on Ohtaka
- ✓Today, we will work with a smaller cell size (24 cations) due to time constraints (please see paper for examination of finite-size effects)

- Target : Disordered but non-random lattice systems
- Conventional methods and their drawbacks
 - Metropolis Monte Carlo algorithm
 - Cluster expansion
- abICS methodology
 - Replica exchange Monte Carlo algorithm
 - On-lattice neural network model
 - Active learning cycles

• Example calculations

- Temperature-dependence of A/B site inversion in spinel oxides
- Defect chemistry in proton conducting oxides

Application to thermodynamics of hydration in $BaZr_{0.78}Sc_{0.22}O_{2.89}V_{00.11}$

Physical quantities other than coordination numbers and energies

- The neural network can be trained to predict extensive properties in the same manner as energy (e.g. lattice volume; not yet included in abICS)
- Calculate average cluster correlations from the sampled configurations

- ⇒Construct supercell models to reproduce these correlations (cf. SQS)
- ⇒Perform DFT calculations on a small number of supercell models
- T. Fujii et al., Phys. Chem. Chem. Phys. 23, 5908 (2021)

24

Summary

- We proposed an on-lattice neural network model for mapping configurations on a lattice to relaxed energies
- Efficient training was realized through an active learning scheme
- First-principles configuration sampling on many-component oxides is now possible!

ab Initio Configuration Sampling https://www.pasums.issp.u-tokyo.ac.jp/abics/