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Target：
Disordered but non-random lattice systems
• Short-range order in high-entropy alloys

üSRO affects the mechanical properties[1]
üSRO affects the magnetic properties[2]
ü…

• Complex oxides (battery materials, etc.）
üIons and ionic defects with varying charges

4[1] R. Zhang et al., Nature 581, 283 (2020).
[2] T. Zuo et al., Acta Mater. 130, 10 (2017).

Exhaustive calculations are impossible
（4-component alloy on 100 sites: ~1057 configurations）

CC-BY-3.0
Wang, Entropy 15, 
5536-5548 (2013)

Ensemble sampling



Thermodynamic importance sampling:
Metropolis Monte Carlo algorithm
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ü {𝒙!} becomes a “chain” of random samples that converges to the equilibrium 
ensemble at given T naturally considering configuration entropy

ü Too slow at low temperature due to local minima trapping

Trial step
…



DFT → Lightweight model？

Cluster expansion: 
Expansion of the total configuration energy as a sum of 
contributions from “clusters”
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Successful in few-component metallic alloys but difficult to 
apply to many component oxides due to combinatorial 
explosion in the number of clusters
• Long-range interactions
• Many-component systems
• Large relaxation

Jin Hyun Chang et al., 
J. Phys.: Condens. Matter 31 325901 (2019)
[CC-BY-3.0]
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Replica Exchange Monte Carlo (RXMC) Method[*]

1. Prepare copies  (replicas) of the system 
and perform Monte Carlo simulations at 
different temperatures

2. Perform swapping of temperatures at 
preset intervals:
𝑝 = min 1, exp (𝐸! − 𝐸()(𝛽! − 𝛽()
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[D. J. Earl and M. W. Deem, PCCP 7, 3910 (2005).]üHigh-T replicas: global search
üLow-T replicas: local optimization
üWell-known in statistical physics 

(spin models) and classical 
molecular dynamics

[*] K. Hukushima and K. Nemoto,
J. Phys. Soc. Jpn. 65, 1604 (1996)



abICS version 1: thermodynamic sampling 
framework using DFT+RXMC

• Direct combination with DFT

• Multilayered parallelism
→Massively parallel supercomputing
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SK and O. Sugino, J. Phys. Condens. Matter 31, 085901 (2019)
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× 16 replicas

Energy

Temperature

* Showing only BO6 octahedra with at least one Y or Vo
* Structures are visualized in 10 step intervals

10SK et al., J. Mater. Chem. A 8, 12674 (2020)



Machine learning potentials（MLP）
• Fit first-principles energies and forces 

with a flexible ML model and accelerate 
FPMD simulations

• NNP (Behler & Parinello), GAP (Rappe), 
MTP (Shapeev), GNN, etc.

• 〇 Structural relaxation possible
• 〇 Can handle many-component 

systems
• △ Large amount of training data needed
• △ Relaxation calculations are necessary 

(cluster expansion is one-shot)
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Benchmark on various MLPs：Y. Zhuo et al., J. Phys. Chem. A 2020, 124, 4, 731‒745



Our idea：
On-lattice neural network model
• Adaptation of BP-type HDNNP[1, 2]

Input: Configuration on ideal lattice 
without relaxation
Output: Total energy after relaxation
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• Easier to train than continuous 
coordinate NNP

• One-shot calculation for relaxed 
energies

[1] J. Behler and M. Parinello, Phys. Rev. Lett. 98, 146401 (2007).
[2] N. Artrith et al., Phys. Rev. B 96, 014112 (2017). 12



abICS version2: training and using a NN 
model with active learning cycles

SK et al., arXiv preprint: 2008.02572 13

Training data: energies of relaxed
configurations

Training a neural network model
for high-speed energy calculation

…

Replica exchange Monte Carlo
using NN model

Thermodynamically 
relevant configs.Add to training 

data

High-throughput DFT calculations

aenet
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15S. Kasamatsu, Y. Motoyama, K. Yoshimi, U. Matsumoto, A. Kuwabara, and T. Ogawa, submitted 
(arXiv: 2008.02572 )

ü Good agreement with previous works （cluster expansion + MC, DFT-RXMC）and 
experiment

A/B site degree of inversion (DOI) in spinel 
oxides (A2+B3+2O3)

×2×2×2 = 192 cation sites 
(448 atoms)



Active learning cycles
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ü By repeating AL cycles (300 DFT calcs./cycle), the energy precision improves 
(RMSE < 1 meV/cation) and physical quantities of interest (DOI vs. T) converges
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Notes on model size and computational 
resources
üDFT relaxations comprise the majority of total computation
üTraining for MgAl2O4 example with 192 cations (448 atoms) 

required about 3 cycles with 300 DFT relaxations each
üDFT relaxations on 300 configurations (VASP GGA-PBE calc. 

with PW cutoff of 400 eV) takes only ~2 hours when using 
144-node queue on Ohtaka

üToday, we will work with a smaller cell size (24 cations) due 
to time constraints (please see paper for examination of 
finite-size effects)
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Relaxation vs. model precision
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(Mean normalized displacement)

ü Local strain is as large as 10%, but prediction accuracy is very high ~ 0.5 meV/cation
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Application to thermodynamics of hydration in 
BaZr0.78Sc0.22O2.89VO0.11
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Ba Zr/Sc
O/VO

H/VH

ü6 components !

K. Hoshino, SK et al., in preparation

ü Proton conducting oxide (0.01 S/cm @ 400 ℃)
[J. Hyodo et al., Adv. Energy. Mater. 10, 2000213 (2020).]
Substitution of Zr4+ by Sc3+

⇒Oxygen vacancies are formed (charge neutrality)
⇒Hydration on oxygen vacancies
⇒proton conduction

ü Which of these vacancies contribute to hydration?

Zr4+ Sc3+ Sc3+ Sc3+ Zr4+ Zr4+



Final model precision
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(a) dry (b) 33% hydration

(c) 66% hydration (d) 100% hydration

RMSE: 1.9 meV/f.u.



Ratio of oxygen vacancy environments
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0 K 500 K

1000 K 1500 K

ü Strong Sc-VO leads to high Sc-VO-Sc concentration at low T
ü Sc-VO-Zr becomes the majority at higher T due to entropy
ü Zr-VO-Zr seldom exists (high hydration activity was suggested*）

[*] Takahashi et al.,
J. Phys. Chem. C 122, 6501 (2018)

Sc-Vo-Sc

Sc-Vo-Zr

Zr-Vo-Zr



33% hydration (596 ℃)

66% hydration (408 ℃)

Active vacancy sites for hydration
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Zr4+ Sc3+ Sc3+ Sc3+ Zr4+ Zr4+<

ü Hydration first occurs preferentially at Sc-VO-Zr
ü At higher water uptake, Sc-VO-Sc becomes the 

majority



Physical quantities other than coordination 
numbers and energies

• The neural network can be trained to 
predict extensive properties in the same
manner as energy (e.g. lattice volume; 
not yet included in abICS)

• Calculate average cluster correlations 
from the sampled configurations
⇒Construct supercell models to reproduce these correlations

(cf. SQS)
⇒Perform DFT calculations on a small number of supercell models
T. Fujii et al., Phys. Chem. Chem. Phys. 23, 5908 (2021)
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モデル予測

dry

wet



Summary
• We proposed an on-lattice neural network model for mapping 

configurations on a lattice to relaxed energies
• Efficient training was realized through an active learning scheme
• First-principles configuration sampling on many-component oxides 

is now possible!
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