
2DMAT's Documentation
Release 2.2.0

2DMAT's developer team

Mar 28, 2024

CONTENTS:

1 Introduction 1
1.1 What is 2DMAT ? . 1
1.2 License . 2
1.3 Version Information . 2
1.4 Main developers . 2

2 Install of py2dmat 3
2.1 Prerequisites . 3
2.2 How to download and install . 3
2.3 How to run . 4
2.4 How to uninstall . 4

3 Tutorials 5
3.1 TRHEPD Direct Problem Solver . 5
3.2 Optimization by Nelder-Mead method . 9
3.3 Grid search . 13
3.4 Optimization by Bayesian Optimization . 19
3.5 Optimization by replica exchange Monte Carlo . 23
3.6 Replica Exchange Monte Carlo search with limitation . 28
3.7 Optimization by population annealing . 30
3.8 Addition of a direct problem solver . 39

4 Input file 41
4.1 [base] section . 41
4.2 [solver] section . 42
4.3 [algorithm] section . 42
4.4 [runner] section . 43
4.5 [mapping] section . 43
4.6 [limitation] section . 43
4.7 [log] section . 44

5 Output files 45
5.1 Common file . 45

6 Search algorithms 47
6.1 Nelder-Mead method minsearch . 47
6.2 Direct parallel search mapper . 49
6.3 Replica exchange Monte Carlo exchange . 51
6.4 Population Annealing Monte Carlo pamc . 56
6.5 Bayse optimization bayes . 63

i

7 Direct Problem Solver 67
7.1 analytical solver . 67
7.2 sim-trhepd-rheed solver . 68
7.3 sxrd solver . 73
7.4 leed solver . 78

8 Related Tools 81
8.1 py2dmat_neighborlist . 81
8.2 tool/to_dft/to_dft.py . 82

9 (For developers) User-defined algorithm and solver 87
9.1 Commons . 87
9.2 Solver . 89
9.3 Algorithm . 90
9.4 Usage . 92

10 Acknowledgements 93

11 Contact 95

Bibliography 97

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is 2DMAT ?

2DMAT is a framework for applying a search algorithm to a direct problem solver to find the optimal solution. As the
standard direct problem solver, the experimental data analysis software for two-dimensional material structure analysis is
prepared. The direct problem solver gives the deviation between the experimental data and the calculated data obtained
under the given parameters such as atomic positions as a loss function used in the inverse problem. The optimal parameters
are estimated by minimizing the loss function using a search algorithm. For further use, the original direct problem solver
or the search algorithm can be defined by users. In the current version, for solving a direct problem, 2DMAT offers
the wrapper of the solver for the total-reflection high-energy positron diffraction (TRHEPD) experiment[1, 2], sxrd[3],
and leed[4]. As algorithms, it offers the Nelder-Mead method[5], the grid search method[6], the Bayesian optimization
method[7], the replica exchange Monte Carlo method[8], and the population annealing Monte Carlo method[9-11]. In
the future, we plan to add other direct problem solvers and search algorithms in 2DMAT.
[1] As a review, see Y. Fukaya, et al., J. Phys. D: Appl. Phys. 52, 013002 (2019).
[2] T. Hanada, Y. Motoyama, K. Yoshimi, and T. Hoshi, Computer Physics Communications 277, 108371 (2022).
[3] W. Voegeli, K. Akimoto, T. Aoyama, K. Sumitani, S. Nakatani, H. Tajiri, T. Takahashi, Y. Hisada, S. Mukainakano,
X. Zhang, H. Sugiyama, H. Kawata, Applied Surface Science 252 (2006) 5259.
[4] M.A. Van Hove, W. Moritz, H. Over, P.J. Rous, A. Wander, A. Barbieri, N. Materer, U. Starke, G.A. Somorjai,
Automated determination of complex surface structures by LEED, Surface Science Reports, Volume 19, 191-229 (1993).
[5] K. Tanaka, T. Hoshi, I. Mochizuki, T. Hanada, A. Ichimiya, and T. Hyodo, Acta. Phys. Pol. A 137, 188 (2020).
[6] K. Tanaka, I. Mochizuki, T. Hanada, A. Ichimiya, T. Hyodo, and T. Hoshi, JJAP Conf. Series,.
[7] Y. Motoyama, R. Tamura, K. Yoshimi, K. Terayama, T. Ueno, and K. Tsuda, Computer Physics Communications
278, 108405 (2022)
[8] K. Hukushima and K. Nemoto, J. Phys. Soc. Japan, 65, 1604 (1996), R. Swendsen and J. Wang, Phys. Rev. Lett.
57, 2607 (1986).
[9] R. M. Neal, Statistics and Computing 11, 125-139 (2001).
[10] K. Hukushima and Y. Iba, AIP Conf. Proc. 690, 200 (2003).
[11] J. Machta, Phys. Rev. E 82, 026704 (2010).

1

https://iopscience.iop.org/article/10.1088/1361-6463/aadf14
https://doi.org/10.1016/j.cpc.2022.108371
https://doi.org/10.1016/0167-5729(93)90011-D
https://doi.org/10.1016/0167-5729(93)90011-D
http://przyrbwn.icm.edu.pl/APP/PDF/137/app137z2p25.pdf
https://doi.org/10.56646/jjapcp.9.0_011301
http://dx.doi.org/10.1016/j.cpc.2022.108405
http://dx.doi.org/10.1016/j.cpc.2022.108405
https://journals.jps.jp/doi/10.1143/JPSJ.65.1604
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2607
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2607
https://link.springer.com/article/10.1023/A:1008923215028
https://aip.scitation.org/doi/abs/10.1063/1.1632130
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.82.026704

2DMAT's Documentation, Release 2.2.0

1.2 License

This package is distributed under GNU General Public License version 3 (GPL v3).

Copyright (c) <2020-> The University of Tokyo. All rights reserved.
This software was developed with the support of “Project for advancement of software usability in materials science” of
The Institute for Solid State Physics, The University of Tokyo. We hope that you cite the following reference when you
publish the results using 2DMAT:
“Data-analysis software framework 2DMAT and its application to experimental measurements for two-dimensional ma-
terial structures”, Y. Motoyama, K. Yoshimi, I. Mochizuki, H. Iwamoto, H. Ichinose, and T. Hoshi, Computer Physics
Communications 280, 108465 (2022).
Bibtex:
@article{MOTOYAMA2022108465, title = {Data-analysis software framework 2DMAT and its application to experi-
mental measurements for two-dimensional material structures}, journal = {Computer Physics Communications}, vol-
ume = {280}, pages = {108465}, year = {2022}, issn = {0010-4655}, doi = {https://doi.org/10.1016/j.cpc.2022.
108465}, url = {https://www.sciencedirect.com/science/article/pii/S0010465522001849}, author = {Yuichi Motoyama
and Kazuyoshi Yoshimi and Izumi Mochizuki and Harumichi Iwamoto and Hayato Ichinose and Takeo Hoshi} }

1.3 Version Information

• v2.1.0: 2022-04-08
• v2.0.0: 2022-01-17
• v1.0.1: 2021-04-15
• v1.0.0: 2021-03-12
• v0.1.0: 2021-02-08

1.4 Main developers

2DMAT has been developed by following members.
• v2.0.0 -

– Y. Motoyama (The Institute for Solid State Physics, The University of Tokyo)
– K. Yoshimi (The Institute for Solid State Physics, The University of Tokyo)
– H. Iwamoto (Department of Applied Mathematics and Physics, Tottori University)
– T. Hoshi (Department of Applied Mathematics and Physics, Tottori University)

• v0.1.0 - v1.0.1
– Y. Motoyama (The Institute for Solid State Physics, The University of Tokyo)
– K. Yoshimi (The Institute for Solid State Physics, The University of Tokyo)
– T. Hoshi (Department of Applied Mathematics and Physics, Tottori University)

2 Chapter 1. Introduction

https://doi.org/10.1016/j.cpc.2022.108465
https://doi.org/10.1016/j.cpc.2022.108465
https://www.sciencedirect.com/science/article/pii/S0010465522001849

CHAPTER

TWO

INSTALL OF PY2DMAT

2.1 Prerequisites

• Python3 (>=3.6.8)
– The following Python packages are required.

∗ tomli >= 1.2
∗ numpy >= 1.14

– Optional packages
∗ mpi4py (required for grid search)
∗ scipy (required for Nelder-Mead method)
∗ physbo (>=0.3, required for Baysian optimization)

2.2 How to download and install

You can install the py2dmat python package and the py2dmat command using the method shown below.
• Installation using PyPI (recommended)

– python3 -m pip install py2dmat

∗ --user option to install locally ($HOME/.local)
∗ If you use py2dmat[all], optional packages will be installed at the same time.

• Installation from source code
1. git clone https://github.com/issp-center-dev/2DMAT

2. python3 -m pip install ./2DMAT

– The pip version must be 19 or higher (can be updated with python3 -m pip install -U
pip).

• Download the sample files
– Sample files are included in the source code.
– git clone https://github.com/issp-center-dev/2DMAT

Note that among the direct problem solvers used in py2dmat, the following solver must be installed separately:
• TRHEPD forward problem solver (sim-trhepd-rheed)

3

2DMAT's Documentation, Release 2.2.0

• SXRD forward problem solver (sxrdcalc)
• LEED forward problem solver (satleed)

Please refer to the tutorials of each solver for installation details.

2.3 How to run

In py2dmat , the analysis is done by using a predefined optimization algorithm Algorithm and a direct problem solver
Solver

$ py2dmat input.toml

See Search algorithms for the predefined Algorithm and Direct Problem Solver for the Solver.
If you want to prepare the Algorithm or Solver by yourself, use the py2dmat package. See (For developers)
User-defined algorithm and solver for details.

2.4 How to uninstall

Please type the following command:

$ python3 -m pip uninstall py2dmat

4 Chapter 2. Install of py2dmat

CHAPTER

THREE

TUTORIALS

The direct problem solver, sim_trhepd_rheed, is based on the Reflection-High-Energy Electron Diffraction
(RHEED, TRHEPD) analysis software developed by Prof. Takashi Hanada at Tohoku University. In TRHEPD, when
atomic coordinates are given, diffraction data is given as a simulation result. Therefore, we are dealing with the direct
problem from atomic coordinates to diffraction data. On the other hand, in many cases, diffraction data is given experi-
mentally, and the atomic coordinates are required to reproduce the experimental data. These are inverse problems to the
above direct problems.
In 2DMAT, the algorithms for solving the inverse problem can be selected as following algorithms:

• minsearch

Estimating plausible atomic coordinates using the Nealder-Mead method.
• mapper_mpi

Estimate plausible atomic coordinates by searching the entire search grid for a given parameter.
• bayes

Estimate plausible atomic coordinates using Bayesian optimization.
• exchange

Sampling plausible atomic coordinates using a replica exchange Monte Carlo method.
• pamc

Sampling plausible atomic coordinates using a population annealing Monte Carlo method.
In this tutorial, we will first introduce how to run the sequential problem program, and then how to run minsearch ,
mapper_mpi, bayes, exchange, and pamc .

3.1 TRHEPD Direct Problem Solver

As one of the forward problem solvers, 2DMAT provides a wrapper for the program sim-trhepd-rheed , which calculates
the intensity of reflection fast (positron) electron diffraction (RHEED, TRHEPD) (A. Ichimiya, Jpn. J. Appl. Phys. 22,
176 (1983); 24, 1365 (1985)). In this tutorial, we will show some examples which use some algorithms with sim-trhepd-
rheed. First, we will install and test sim-trhepd-rheed (for details, see the official web page for sim-trhepd-rheed).

5

https://github.com/sim-trhepd-rheed/sim-trhepd-rheed/
https://github.com/sim-trhepd-rheed/sim-trhepd-rheed/

2DMAT's Documentation, Release 2.2.0

3.1.1 Download and Install

First, in the tutorial, we assume that you are at the location where the 2DMAT folder is located.

$ ls -d 2DMAT
2DMAT/

Get the source codes from the sim-trhepd-rheed repository on GitHub and build it.

git clone http://github.com/sim-trhepd-rheed/sim-trhepd-rheed
cd sim-trhepd-rheed/src
make

If make is successful, bulk.exe and surf.exe will be created.

3.1.2 Calculation execution

In sim-trhepd-rheed, the bulk part of the surface structure is first calculated with bulk.exe. Then, using the results of
the bulk.exe calculation (the bulkP.b file), the surface portion of the surf.exe surface structure is calculated.
In this tutorial, we will actually try to do the TRHEPD calculation. The sample input files are located in sample/
sim-trhepd-rheed in 2DMAT. First, copy this folder to a suitable working folder work.

cd ../../
cp -r 2DMAT/sample/sim-trhepd-rheed/solver work
cd work

Next, copy bulk.exe and surf.exe to work.

cp ../sim-trhepd-rheed/src/bulk.exe .
cp ../sim-trhepd-rheed/src/surf.exe .

Execute bulk.exe.

./bulk.exe

Then, the bulk file bulkP.b will be generated with the following output.

0:electron 1:positron ?
P
input-filename (end=e) ? :
bulk.txt
output-filename :
bulkP.b

Next, execute surf.exe.

./surf.exe

Then, the following standard output will be seen.

bulk-filename (end=e) ? :
bulkP.b
structure-filename (end=e) ? :
surf.txt
output-filename :

(continues on next page)

6 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
surf-bulkP.md
surf-bulkP.s

After execution, the files surf-bulkP.md, surf-bulkP.s and SURFYYYYMMDD-HHMMSSlog.txt will be
generated. (YYYYMMDD and HHMMSS are numbers corresponding to the execution date and time).

3.1.3 Visualization of calculation result

The contents of surf-bulkP.s are shown as follow:

#azimuths,g-angles,beams
1 56 13
#ih,ik
6 0 5 0 4 0 3 0 2 0 1 0 0 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0
0.5000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.
↪→1595E-01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.6000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.
↪→1870E-01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.7000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.
↪→2121E-01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.8000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.2171E-02, 0.
↪→1927E-01, 0.2171E-02, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.9000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.4397E-02, 0.
↪→1700E-01, 0.4397E-02, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.1000E+01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.6326E-02, 0.
↪→1495E-01, 0.6326E-02, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
...

From the above file, create a rocking curve from the angle on the vertical axis (first column of data after row 5) and the
intensity of the (0,0) peak (eighth column of data after row 5). You can use Gnuplot or other graphing software, but here
we use the program plot_bulkP.py in the 2DMAT/script folder. Run it as follows.

python3 ../2DMAT/script/plot_bulkP.py

The following plot_bulkP.png will be created.
We will convolute and normalize the diffraction intensity data of the 00 peaks. Prepare surf-bulkP.s and run
make_convolution.py.

python3 ../2DMAT/script/make_convolution.py

When executed, the following file convolution.txt will be created.

0.500000 0.010818010
0.600000 0.013986716
0.700000 0.016119093
0.800000 0.017039022
0.900000 0.017084666

... skipped ...
5.600000 0.000728539
5.700000 0.000530758
5.800000 0.000412908
5.900000 0.000341740
6.000000 0.000277553

3.1. TRHEPD Direct Problem Solver 7

2DMAT's Documentation, Release 2.2.0

Fig. 3.1: Rocking curve of Si(001)-2x1 surface.

8 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

The first column is the viewing angle, and the second column is the normalized 00-peak diffraction intensity data written
in surf-bulkP.s with a convolution of half-width 0.5.

3.2 Optimization by Nelder-Mead method

In this section, we will explain how to calculate the inverse problem of analyzing atomic coordinates from diffraction data
using the Nelder-Mead method. The specific calculation procedure is as follows.

0. Preparation of the reference file
Prepare the reference file to be matched (in this tutorial, it corresponds to experiment.txt described below).

1. Perform calculations on the bulk part of the surface structure.
Copy bulk.exe to sample/sim-trhepd-rheed/minsearch and run the calculation.

2. Run the main program
Run the calculation using src/py2dmat_main.py to estimate the atomic coordinates.

In the main program, the Nelder-Meadmethod (using scipy.optimize.fmin) is used.) to find the parameter that minimizes
the deviation (R-value) between the intensity obtained using the solver (in this case surf.exe) and the intensity listed
in the reference file (experiment.txt).

3.2.1 Location of the sample files

The sample files are located in sample/py2dmat/sim-trhepd-rheed/single_beam/minsearch. The
following files are stored in the folder.

• bulk.txt

Input file of bulk.exe.
• experiment.txt , template.txt
Reference file to proceed with calculations in the main program.

• ref.txt

A file containing the answers you want to seek in this tutorial.
• input.toml

Input file of the main program.
• prepare.sh , do.sh

Script prepared for doing all calculation of this tutorial
The following sections describe these files and then show the actual calculation results.

3.2. Optimization by Nelder-Mead method 9

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html

2DMAT's Documentation, Release 2.2.0

3.2.2 The reference file

The template.txt file is almost the same format as the input file for surf.exe. The parameters to be run (such as
the atomic coordinates you want to find) are rewritten as value_* or some other appropriate string. The following is
the content of template.txt.

2 ,NELMS, -------- Ge(001)-c4x2
32,1.0,0.1 ,Ge Z,da1,sap
0.6,0.6,0.6 ,BH(I),BK(I),BZ(I)
32,1.0,0.1 ,Ge Z,da1,sap
0.4,0.4,0.4 ,BH(I),BK(I),BZ(I)
9,4,0,0,2, 2.0,-0.5,0.5 ,NSGS,msa,msb,nsa,nsb,dthick,DXS,DYS
8 ,NATM
1, 1.0, 1.34502591 1 value_01 ,IELM(I),ocr(I),X(I),Y(I),Z(I)
1, 1.0, 0.752457792 1 value_02
2, 1.0, 1.480003343 1.465005851 value_03
2, 1.0, 2 1.497500418 2.281675
2, 1.0, 1 1.5 1.991675
2, 1.0, 0 1 0.847225
2, 1.0, 2 1 0.807225
2, 1.0, 1.009998328 1 0.597225
1,1 ,(WDOM,I=1,NDOM)

In this input file, value_01, value_02, and value_03 are used. In the sample folder, there is a reference file
ref.txt to know if the atomic positions are estimated correctly. The contents of this file are

fx = 7.382680568652868e-06
z1 = 5.230524973874179
z2 = 4.370622919269477
z3 = 3.5961444501081647

value_0x corresponds to z_x (x=1, 2, 3). fx is the optimal value of the objective function. The experiment.txt
is a file that is used as a reference in the main program, and is equivalent to convolution.txt, which is calculated by
putting the parameters in ref.txt into template.txt and following the same procedure as in the tutorial on direct
problems. (Note that the input files for bulk.exe and suft.exe are different from those in the sequential problem
tutorial.)

3.2.3 Input file

In this section, we will prepare the input file input.toml for the main program. The details of input.toml can be
found in the input file. This section describes the contents of input.toml in the sample file.

[base]
dimension = 3

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02", "value_03"]
degree_max = 7.0

(continues on next page)

10 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

(continued from previous page)

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

[algorithm]
name = "minsearch"
label_list = ["z1", "z2", "z3"]

[algorithm.param]
min_list = [0.0, 0.0, 0.0]
max_list = [10.0, 10.0, 10.0]
initial_list = [5.25, 4.25, 3.50]

First, [base] section is explained.
• The dimension is the number of variables to be optimized, in this case 3 since we are optimizing three variables
as described in template.txt.

The [solver] section specifies the solver to be used inside the main program and its settings.
• The name is the name of the solver you want to use, which in this tutorial is sim-trhepd-rheed, since we
will be using it for our analysis.

The solver can be configured in the subsections [solver.config], [solver.param], and [solver.
reference].
The [solver.config] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The calculated_first_line specifies the first line to read from the output file.
• The calculated_last_line specifies the last line of the output file to be read.
• The row_number specifies the number of columns in the output file to read.

The [solver.param] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The string_list is a list of variable names to be read in template.txt.
• degree_max specifies the maximum angle in degrees.

The [solver.reference] section specifies the location of the experimental data and the range to read.
• The path specifies the path where the experimental data is located.
• The first specifies the first line of the experimental data file to read.
• The end specifies the last line of the experimental data file to read.

The [algorithm] section specifies the algorithm to use and its settings.
• The name is the name of the algorithm you want to use, in this tutorial we will use minsearch since we will be
using the Nelder-Mead method.

• The label_list is a list of label names to be added to the output of value_0x (x=1,2,3).
The [algorithm.param] section specifies the range of parameters to search and their initial values.

• The min_list and max_list specify the minimum and maximum values of the search range, respectively.
• The initial_list specifies the initial values.

3.2. Optimization by Nelder-Mead method 11

2DMAT's Documentation, Release 2.2.0

Other parameters, such as convergence judgments used in the Nelder-Mead method, can be done in the [algorithm]
section, although they are omitted here because the default values are used. See the input file chapter for details.

3.2.4 Calculation execution

First, move to the folder where the sample files are located (we will assume that you are directly under the directory where
you downloaded this software).

cd sample/sim-trhepd-rheed/single_beam/minsearch

Copy bulk.exe and surf.exe.

cp ../../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

First, run bulk.exe to create bulkP.b.

./bulk.exe

After that, run the main program (the computation time takes only a few seconds on a normal PC).

python3 ../../../../src/py2dmat_main.py input.toml | tee log.txt

Then, the standard output will be seen as follows.

Read experiment.txt
z1 = 5.25000
z2 = 4.25000
z3 = 3.50000
[' 5.25000', ' 4.25000', ' 3.50000']
PASS : degree in lastline = 7.0
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.015199251773721183
z1 = 5.50000
z2 = 4.25000
z3 = 3.50000
[' 5.50000', ' 4.25000', ' 3.50000']
PASS : degree in lastline = 7.0
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.04380131351780189
z1 = 5.25000
z2 = 4.50000
z3 = 3.50000
[' 5.25000', ' 4.50000', ' 3.50000']
...

The z1, z2, and z3 are the candidate parameters at each step and the R-factor at that time. The results of each step
are also output to the folder Logxxxxx (where xxxxxx is the number of steps). The final estimated parameters will be
output to res.dat. In the current case, the following result is obtained:

z1 = 5.230524973874179
z2 = 4.370622919269477
z3 = 3.5961444501081647

You can see that we get the same value as the correct answer data ref.txt. Note that do.sh is available as a script for
batch calculation. In do.sh, it also compares the difference between res.txt and ref.txt. Here is what it does,
without further explanation.

12 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

sh ./prepare.sh

./bulk.exe

time python3 ../../../../src/py2dmat_main.py input.toml | tee log.txt

echo diff res.txt ref.txt
res=0
diff res.txt ref.txt || res=$?
if [$res -eq 0]; then

echo Test PASS
true

else
echo Test FAILED: res.txt and ref.txt differ
false

fi

3.2.5 Visualization of calculation results

The data of the rocking curve at each step is stored in Logxxxx_00000001 (where xxxx is the index of steps) as
RockingCurve.txt. A tool draw_RC_double.py is provided to visualize this data. In this section, we will use
this tool to visualize the results.

cp 0/Log00000001_00000001/RockingCurve.txt RockingCurve_ini.txt
cp 0/Log00000062_00000001/RockingCurve.txt RockingCurve_con.txt
cp ../../../../script/draw_RC_double.py .
python draw_RC_double.py

Running the above will output RC_double.png.
From the figure, we can see that the last step agrees with the experimental one.

3.3 Grid search

In this section, we will explain how to perform a grid-type search and analyze atomic coordinates from diffraction data.
The grid type search is compatible with MPI. The specific calculation procedure is the same as for minsearch. How-
ever, it is necessary to prepare the data MeshData.txt to give the search grid in advance.

3.3.1 Location of the sample files

The sample files are located in sample/sim-trhepd-rheed/single_beam/mapper. The following files are
stored in the folder

• bulk.txt

Input file of bulk.exe
• experiment.txt , template.txt
Reference file to proceed with calculations in the main program.

• ref_ColorMap.txt

A file to check if the calculation was performed correctly (the answer to ColorMap.txt obtained by doing this
tutorial).

3.3. Grid search 13

2DMAT's Documentation, Release 2.2.0

0 1 2 3 4 5 6 7
degree

0.00

0.01

0.02

0.03

0.04

I

experiment
initial(R-factor = 0.015199)
converged(R-factor = 0.000007)

Fig. 3.2: Analysis using the Nelder-Mead method. The red circle represents the experimental value, the blue line repre-
sents the first step, and the green line represents the rocking curve obtained at the last step.

14 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

• input.toml

Input file of the main program.
• prepare.sh , do.sh
Script prepared for bulk calculation of this tutorial.

Below, we will describe these files and then show the actual calculation results.

3.3.2 Reference file

The template.txt and experiment.txt are the same as in the previous tutorial (Nealder-Mead optimization).
However, to reduce the computation time, the value is fixed to 3.5 instead of value_03, and the grid is searched in
2D. The actual grid to be searched is given in MeshData.txt. In the sample, the contents of MeshData.txt are as
follows.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

The first column is the serial number, and the second and subsequent columns are the values of value_0 , value_1
that go into template.txt, in that order.

3.3.3 Input file

This section describes the input file for the main program, input.toml. The details of input.toml can be found
in the input file. The following is the content of input.toml in the sample file.

[base]
dimension = 2

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

(continues on next page)

3.3. Grid search 15

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
[algorithm]
name = "mapper"
label_list = ["z1", "z2"]

First, [base] section is explained.
• The dimension is the number of variables to be optimized, in this case 2 since we are optimizing two variables
as described in template.txt.

The [solver] section specifies the solver to be used inside the main program and its settings.
• The name is the name of the solver you want to use, which in this tutorial is sim-trhepd-rheed, since we
will be using it for our analysis.

The solver can be configured in the subsections [solver.config], [solver.param], and [solver.
reference].
The [solver.config] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The calculated_first_line specifies the first line to read from the output file.
• The calculated_last_line specifies the last line of the output file to be read.
• The row_number specifies the number of columns in the output file to read.

The [solver.param] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The string_list is a list of variable names to be read in template.txt.
• degree_max specifies the maximum angle in degrees.

The [solver.reference] section specifies the location of the experimental data and the range to read.
• The path specifies the path where the experimental data is located.
• The first specifies the first line of the experimental data file to read.
• The end specifies the last line of the experimental data file to read.

The [algorithm] section specifies the algorithm to use and its settings.
• The name is the name of the algorithm you want to use, in this tutorial we will use mapper since we will be using
grid-search method.

• The label_list is a list of label names to be attached to the output value_0x (x=1,2).
For details on other parameters that can be specified in the input file, please see the Input File chapter.

3.3.4 Calculation execution

First, move to the folder where the sample files are located (we will assume that you are directly under the directory where
you downloaded this software).

cd sample/sim-trhepd-rheed/single_beam/minsearch

Copy bulk.exe and surf.exe.

cp ../../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

16 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

First, run bulk.exe to create bulkP.b.

./bulk.exe

After that, run the main program (the computation time takes only a few seconds on a normal PC).

mpiexec -np 2 python3 ../../../../src/py2dmat_main.py input.toml | tee log.txt

Here, the calculation using MPI parallel with 2 processes will be done. When executed, a folder for each rank will be
created, and a subfolder Log%%%%% (where %%%%% is the grid id) will be created under it. (The grid id is assigned to
the number in MeshData.txt). The standard output will be seen like this.

Iteration : 1/33
Read experiment.txt
mesh before: [1.0, 6.0, 6.0]
z1 = 6.00000
z2 = 6.00000
[' 6.00000', ' 6.00000']
PASS : degree in lastline = 7.0
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.04785241875354398
...

The z1 and z2 are the candidate parameters for each mesh and the R-factor at that time. Finally, the R-factor
calculated for all the points on the grid will be output to ColorMap.txt. In this case, the following results will be
obtained.

6.000000 6.000000 0.047852
6.000000 5.750000 0.055011
6.000000 5.500000 0.053190
6.000000 5.250000 0.038905
6.000000 5.000000 0.047674
6.000000 4.750000 0.065919
6.000000 4.500000 0.053675
6.000000 4.250000 0.061261
6.000000 4.000000 0.069351
6.000000 3.750000 0.071868
6.000000 3.500000 0.072739
...

The first and second columns will contain the values of value_01 and value_02, and the third column will contain
the R-factor. Note that do.sh is available as a script for batch calculation. In do.sh, it also compares the difference
between res.txt and ref.txt. Here is what it does, without further explanation.

sh prepare.sh

./bulk.exe

time mpiexec -np 2 python3 ../../../../src/py2dmat_main.py input.toml

echo diff ColorMap.txt ref_ColorMap.txt
res=0
diff ColorMap.txt ref_ColorMap.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else

(continues on next page)

3.3. Grid search 17

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
echo TEST FAILED: ColorMap.txt and ref_ColorMap.txt differ
false

fi

3.3.5 Visualization of calculation results

By seeing ColorMap.txt, we can estimate the region where the small parameters of R-factor are located. In this
case, the following command will create a two-dimensional parameter space diagram ColorMapFig.png.

python3 plot_colormap_2d.py

Looking at the generated figure, we can see that it has a minimum value around (5.25, 4.25).

Fig. 3.3: R-factor on a two-dimensional parameter space.

RockingCurve.txt is stored in each subfolder. By using it, you can compare the results with the experimental values
following the procedure in the previous tutorial.

18 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.4 Optimization by Bayesian Optimization

This tutorial subscribes how to estimate atomic positions from the experimental diffraction data by using Bayesian opti-
mization (BO). 2DMAT uses PHYSBO for BO.

3.4.1 Sample files

Sample files are available from sample/sim-trhepd-rheed/single_beam/bayes . This directory includes
the following files:

• bulk.txt

The input file of bulk.exe
• experiment.txt , template.txt
Reference files for the main program

• ref_BayesData.txt

Solution file for checking whether the calucation successes or not
• input.toml

The input file of py2dmat
• prepare.sh , do.sh
Script files for running this tutorial

In the following, we will subscribe these files and then show the result.

3.4.2 Reference files

This tutorial uses template.txt , experiment.txt similar to the previous one (minsearch). Only difference
is that in this tutorial the third parameter value_03 is fixed to 3.5 in order to speed up the calculation. The parameter
space to be explored is given by MeshData.txt.

1 3.5 3.5
2 3.6 3.5
3 3.6 3.6
4 3.7 3.5
5 3.7 3.6
6 3.7 3.7
7 3.8 3.5
8 3.8 3.6
9 3.8 3.7
10 3.8 3.8

...

The first column is the index of the point and the remaining ones are the coodinates, value_0 and value_1 in the
template.txt.

3.4. Optimization by Bayesian Optimization 19

https://www.pasums.issp.u-tokyo.ac.jp/physbo/en

2DMAT's Documentation, Release 2.2.0

3.4.3 Input files

This subsection describes the input file. For details, see the manual of bayes. input.toml in the sample directory is
shown as the following

[base]
dimension = 2

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

[algorithm]
name = "bayes"
label_list = ["z1", "z2"]

[algorithm.param]
mesh_path = "MeshData.txt"

[algorithm.bayes]
random_max_num_probes = 10
bayes_max_num_probes = 20

• The [base] section describes the settings for a whole calculation.
– dimension is the number of variables you want to optimize. In this case, specify 2 because it optimizes
two variables.

• The [solver] section specifies the solver to use inside the main program and its settings.
– See the minsearch tutorial.

• The [algorithm] section sets the algorithm to use and its settings.
– name is the name of the algorithm you want to use, and in this tutorial we will do a Bayesian optimization
analysis, so specify bayes.

– label_list is a list of label names to be given when outputting the value of value_0x (x = 1,2).
– The [algorithm.bayes] section sets the parameters for Bayesian optimization.

∗ random_max_num_probes specifies the number of random searches before Bayesian optimization.
∗ bayes_max_num_probes specifies the number of Bayesian searches.

For details on other parameters that can be specified in the input file, see the chapter on input files of bayes.

20 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.4.4 Calculation

First, move to the folder where the sample file is located (hereinafter, it is assumed that you are the root directory of
2DMAT).

cd sample/sim-trhepd-rheed/single_beam/bayes

Copy bulk.exe and surf.exe as the tutorial for the direct problem.

cp ../../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

Execute bulk.exe to generate bulkP.b .

./bulk.exe

Then, run the main program (it takes a few secondes)

python3 ../../../../src/py2dmat_main.py input.toml | tee log.txt

This makes a directory with the name of 0 . The following standard output will be shown:

parameter
random_max_num_probes = 10
bayes_max_num_probes = 20
score = TS
interval = 5
num_rand_basis = 5000
value_01 = 5.10000
value_02 = 4.90000
R-factor = 0.037237314010261195
0001-th step: f(x) = -0.037237 (action=150)

current best f(x) = -0.037237 (best action=150)

value_01 = 4.30000
value_02 = 3.50000

A list of hyperparameters, followed by candidate parameters at each step and the corresponding R-factor multiplied
by−1, are shown first. It also outputs the grid index (action) and f(x) with the best R-factor at that time. Under
the directory 0, subdirectories with the name is the grid id are created, like Log%%%%% (%%%%% is the grid id), and the
solver output for each grid is saved. (The first column in MeshData.txt will be assigned as the id of the grid). The
final estimated parameters are output to BayesData.txt.
In this case, BayesData.txt can be seen as the following

#step z1 z2 fx z1_action z2_action fx_action
0 5.1 4.9 0.037237314010261195 5.1 4.9 0.037237314010261195
1 5.1 4.9 0.037237314010261195 4.3 3.5 0.06050786306685965
2 5.1 4.9 0.037237314010261195 5.3 3.9 0.06215778000834068
3 5.1 4.9 0.037237314010261195 4.7 4.2 0.049210767760634364
4 5.1 4.9 0.037237314010261195 5.7 3.7 0.08394457854191653
5 5.1 4.9 0.037237314010261195 5.2 5.2 0.05556857782716691
6 5.1 4.9 0.037237314010261195 5.7 4.0 0.0754639895013157
7 5.1 4.9 0.037237314010261195 6.0 4.4 0.054757310814479355
8 5.1 4.9 0.037237314010261195 6.0 4.2 0.06339787375966344
9 5.1 4.9 0.037237314010261195 5.7 5.2 0.05348404677676544
10 5.1 4.7 0.03002813055356341 5.1 4.7 0.03002813055356341

(continues on next page)

3.4. Optimization by Bayesian Optimization 21

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
11 5.1 4.7 0.03002813055356341 5.0 4.4 0.03019977423448576
12 5.3 4.5 0.02887504880071686 5.3 4.5 0.02887504880071686
13 5.1 4.5 0.025865346123665988 5.1 4.5 0.025865346123665988
14 5.2 4.4 0.02031077875240244 5.2 4.4 0.02031077875240244
15 5.2 4.4 0.02031077875240244 5.2 4.6 0.023291891689059388
16 5.2 4.4 0.02031077875240244 5.2 4.5 0.02345999725278686
17 5.2 4.4 0.02031077875240244 5.1 4.4 0.022561543431398066
18 5.2 4.4 0.02031077875240244 5.3 4.4 0.02544527153306051
19 5.2 4.4 0.02031077875240244 5.1 4.6 0.02778877135528466
20 5.2 4.3 0.012576357659158034 5.2 4.3 0.012576357659158034
21 5.1 4.2 0.010217361468113488 5.1 4.2 0.010217361468113488
22 5.1 4.2 0.010217361468113488 5.2 4.2 0.013178053637167673

...

The first column contains the number of steps, and the second, third, and fourth columns contain value_01,
value_02, and R-factor, which give the highest score at that time. This is followed by the candidate value_01,
value_02 and R-factor for that step. In this case, you can see that the correct solution is obtained at the 21th step.
In addition, do.sh is prepared as a script for batch calculation. do.sh also checks the difference between
BayesData.dat and ref_BayesData.dat. I will omit the explanation below, but I will post the contents.

sh prepare.sh

./bulk.exe

time python3 ../../../../src/py2dmat_main.py input.toml

echo diff BayesData.txt ref_BayesData.txt
res=0
diff BayesData.txt ref_BayesData.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else
echo TEST FAILED: BayesData.txt.txt and ref_BayesData.txt.txt differ
false

fi

3.4.5 Visualization

You can see at what step the parameter gave the minimum score by looking at BayesData.txt. Since
RockingCurve.txt is stored in a subfolder for each step, it is possible to compare it with the experimental value by
following the procedure of :doc:minsearch.

22 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.5 Optimization by replica exchange Monte Carlo

This tutorial subscribes how to estimate atomic positions from the experimental diffraction data by using the replica
exchange Monte Carlo method (RXMC).

3.5.1 Sample files

Sample files are available from sample/sim-trhepd-rheed/single_beam/exchange . This directory in-
cludes the following files:

• bulk.txt

The input file of bulk.exe
• experiment.txt , template.txt
Reference files for the main program

• ref.txt

Solution file for checking whether the calucation successes or not
• input.toml

The input file of py2dmat
• prepare.sh , do.sh
Script files for running this tutorial

In the following, we will subscribe these files and then show the result.

3.5.2 Reference files

This tutorial uses reference files, template.txt and experiment.txt, which are the same as the previous tutorial
(Optimization by Nelder-Mead method) uses.

3.5.3 Input files

This subsection describes the input file. For details, see the manual of bayes. input.toml in the sample directory is
shown as the following

[base]
dimension = 2

[algorithm]
name = "exchange"
label_list = ["z1", "z2"]
seed = 12345

[algorithm.param]
min_list = [3.0, 3.0]
max_list = [6.0, 6.0]

[algorithm.exchange]
numsteps = 1000
numsteps_exchange = 20

(continues on next page)

3.5. Optimization by replica exchange Monte Carlo 23

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
Tmin = 0.005
Tmax = 0.05
Tlogspace = true

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

In the following, we will briefly describe this input file. For details, see the manual of Replica exchange Monte Carlo
exchange.

• The [base] section describes the settings for a whole calculation.
– dimension is the number of variables you want to optimize. In this case, specify 2 because it optimizes
two variables.

• The [solver] section specifies the solver to use inside the main program and its settings.
– See the minsearch tutorial.

• The [algorithm] section sets the algorithm to use and its settings.
– name is the name of the algorithm you want to use, and in this tutorial we will use RXMC, so specify
exchange.

– label_list is a list of label names to be given when outputting the value of value_0x (x = 1,2).
– seed is the seed that a pseudo-random number generator uses.
– The [algorithm.param] section sets the parameter space to be explored.

∗ min_list is a lower bound and max_list is an upper bound.
– The [algorithm.exchange] section sets the parameters for RXMC.

∗ numstep is the number of Monte Carlo steps.
∗ numsteps_exchange is the number of interval steps between temperature exchanges.
∗ Tmin, Tmax are the minimum and the maximum of temperature, respectively.
∗ When Tlogspace is true, the temperature points are distributed uniformly in the logarithmic space.

• The [solver] section specifies the solver to use inside the main program and its settings.
– See the Optimization by Nelder-Mead method tutorial.

24 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.5.4 Calculation

First, move to the folder where the sample file is located (hereinafter, it is assumed that you are the root directory of
2DMAT).

cd sample/sim-trhepd-rheed/single_beam/exchange

Copy bulk.exe and surf.exe as the tutorial for the direct problem.

cp ../../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

Execute bulk.exe to generate bulkP.b .

./bulk.exe

Then, run the main program (it takes a few secondes)

mpiexec -np 4 python3 ../../../../src/py2dmat_main.py input.toml | tee log.txt

Here, the calculation is performed using MPI parallel with 4 processes. (If you are using Open MPI and you request more
processes than you can use, add the --oversubscribed option to the mpiexec command.)
When executed, a folder for each rank will be created, and a trial.txt file containing the parameters evaluated in each
Monte Carlo step and the value of the objective function, and a result.txt file containing the parameters actually
adopted will be created.
These files have the same format: the first two columns are time (step) and the index of walker in the process, the third
is the temperature, the fourth column is the value of the objective function, and the fifth and subsequent columns are the
parameters.

step walker T fx x1 x2
0 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
2 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
3 0 0.004999999999999999 0.06273922648753057 4.330900869594549 4.311333132184154

In the case of the sim-trhepd-rheed solver, a subfolder Log%%%%% (%%%%% is the number of MC steps) is created under
each working folder, and locking curve information etc. are recorded.
Finally, best_result.txt is filled with information about the parameter with the optimal objective function (R-
factor), the rank from which it was obtained, and the Monte Carlo step.

nprocs = 4
rank = 2
step = 65
fx = 0.008233957976993406
x[0] = 4.221129370933539
x[1] = 5.139591716517661

In addition, do.sh is prepared as a script for batch calculation. do.sh also checks the difference between
best_result.txt and ref.txt. I will omit the explanation below, but I will post the contents.

sh prepare.sh

./bulk.exe

time mpiexec --oversubscribe -np 4 python3 ../../../../src/py2dmat_main.py input.toml

(continues on next page)

3.5. Optimization by replica exchange Monte Carlo 25

2DMAT's Documentation, Release 2.2.0

(continued from previous page)

echo diff best_result.txt ref.txt
res=0
diff best_result.txt ref.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else
echo TEST FAILED: best_result.txt and ref.txt differ
false

fi

3.5.5 Post process

The result.txt in each rank folder records the data sampled by each replica, but the same replica holds samples at
different temperatures because of the temperature exchanges. 2DMat provides a script, script/separateT.py,
that rearranges the results of all replicas into samples by temperature.

python3 ../../../../script/separateT.py

The data reorganized for each temperature point is written to result_T%.txt (% is the index of the temperature
point). The first column is the step, the second column is the rank, the third column is the value of the objective function,
and the fourth and subsequent columns are the parameters.
Example:

T = 0.004999999999999999
step rank fx x1 x2
0 0 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0 0.07830821484593968 3.682008067401509 3.9502750191292586
2 0 0.07830821484593968 3.682008067401509 3.9502750191292586

3.5.6 Visualization

By illustrating result_T.txt, you can estimate regions where the parameters with small R-factor are. In this case,
the figure result.png of the 2D parameter space is created by using the following command.

python3 plot_result_2d.py

Looking at the resulting diagram, we can see that the samples are concentrated near (5.25, 4.25) and (4.25, 5.25), and
that the R-factor value is small there.
Also, RockingCurve.txt is stored in each subfolder, LogXXX_YYY (XXX is an index of MC step and YYY is an
index of a replica in the MPI process). By using this, it is possible to compare with the experimental value according to
the procedure of the previous tutorial.

26 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0
x1

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

x2

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 3.4: Sampled parameters and R-factor. The horizontal axes is value_01 and the vertical axes is value_02 .

3.5. Optimization by replica exchange Monte Carlo 27

2DMAT's Documentation, Release 2.2.0

3.6 Replica Exchange Monte Carlo search with limitation

This tutorial describes the constraint expression function that can be set in the [runner.limitation] section. As
an example, the replica exchange Monte Carlo method is applied to the calculation of Himmelblau with constraints.

3.6.1 Sample files location

Sample files are available in the sample/analytical/limitation directory. This directory contains the follow-
ing files.

• ref.txt

File to check if the calculation is executed correctly (answer to obtain by performing this tutorial).
• input.toml

Input file for the main program.
• do.sh

Script prepared to calculate this tutorial at once.
In the following, we will explain these files, and then introduce the actual calculation results.

3.6.2 Input files

The following input.toml is an input file for the main program.

[base]
dimension = 2
output_dir = "output"

[algorithm]
name = "exchange"
seed = 12345

[algorithm.param]
max_list = [6.0, 6.0]
min_list = [-6.0, -6.0]
unit_list = [0.3, 0.3]

[algorithm.exchange]
Tmin = 1.0
Tmax = 100000.0
numsteps = 10000
numsteps_exchange = 100

[solver]
name = "analytical"
function_name = "himmelblau"

[runner]
[runner.limitation]
co_a = [[1, -1],[1, 1]]
co_b = [[0], [-1]]

28 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

[base] section is the parameter of the main program. dimension is the number of variables to be optimized, and in
this case, it is 2.
[algorithm] section is the section to set the search algorithm. name is the name of the search algorithm. In this
case, specify "exchange" for the replica exchangeMonte Carlo method. seed is the seed given to the pseudo-random
number generator.
[algorithm.param] sub-section specifies the range of parameters to be optimized. min_list indicates the min-
imum value, and max_list indicates the maximum value.
[algorithm.exchange] sub-section specifies the hyperparameters of the replica exchange Monte Carlo method.

• numstep is the number of Monte Carlo updates.
• numsteps_exchange specifies the number of times to attempt temperature exchange.
• Tmin and Tmax are the lower and upper limits of the temperature, respectively.
• If Tlogspace is true, the temperature is divided equally in log space. This option is not specified in this
input.toml because the default value is true.

[solver] section specifies the solver used internally in the main program. In this case, the analytical solver is
specified. The analytical solver sets the function using the function_name parameter, and in this case, the
Himmelblau function is specified.
[runner] section has a sub-section [runner.limitation], and in this section, the constraint expression is set.
In the current version, the constraint expression is defined as Ax+ b > 0 where x is N dimensional input parameter, A
is aM ×N matrix, and b is aM dimensional vector. A and b are set by co_a and co_b, respectively. For details, see
the [limitation] section in the input file in the manual.
In this case, the following constraint is imposed:

x1−x2 > 0

x1 + x2−1 > 0

3.6.3 Calculation

First, move to the folder where the sample file is located (assuming that you are directly under the directory where you
downloaded this software).

cd sample/analytical/limitation

Then, execute the main program as follows (the calculation time will end in about 20 seconds on a normal PC).

mpiexec -np 10 python3 ../../../src/py2dmat_main.py input.toml | tee log.txt

In this case, a calculation with 10MPI parallel processes is performed. (When using OpenMPI, if the number of processes
to be used is greater than the number of available cores, add the --oversubscribed option to the mpiexec com-
mand.) After executed, the output folder is generated, and in it, a subfolder for each rank is created. Each subfolder
contains the results of the calculation. trial.txt file, which contains the parameters and objective function values
evaluated at each Monte Carlo step, and result.txt file, which contains the parameters actually adopted, are created.
Both files have the same format, with the first two columns being the step number and the walker number within the
process, the next being the temperature, the third being the value of the objective function, and the fourth and subsequent
being the parameters. The following is the beginning of the output/0/result.txt file:

step walker T fx x1 x2
0 0 1.0 187.94429125133564 5.155393113805774 -2.203493345018569
1 0 1.0 148.23606736778044 4.9995614992887525 -2.370212436322816

(continues on next page)

3.6. Replica Exchange Monte Carlo search with limitation 29

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
2 0 1.0 148.23606736778044 4.9995614992887525 -2.370212436322816
3 0 1.0 148.23606736778044 4.9995614992887525 -2.370212436322816

Finally, the best parameter and the rank and Monte Carlo step at which the objective function is minimized are written
to output/best_result.txt.

nprocs = 10
rank = 2
step = 4523
walker = 0
fx = 0.00010188398524402734
x1 = 3.584944906595298
x2 = -1.8506985826548874

do.sh is available as a script to calculate all at once. Additionally, in do.sh, the difference between best_result.
txt and ref.txt is also compared.

#!/bin/bash
mpiexec -np 10 --oversubscribe python3 ../../../src/py2dmat_main.py input.toml

echo diff output/best_result.txt ref.txt
res=0
diff output/best_result.txt ref.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else
echo TEST FAILED: best_result.txt and ref.txt differ
false

fi

3.6.4 Visualization of the calculation result

By visualizing the result.txt file, we can confirm that the search is only for coordinates that satisfy the constraint
expression. hist2d_limitation_sample.py is prepared to visualize the 2D parameter space. This generates a
histogram of the posterior probability distribution in the <execution date>_histogram folder. The histogram
is generated using the data obtained by discarding the first 1000 steps of the search as a burn-in period.

python3 hist2d_limitation_sample.py -p 10 -i input.toml -b 0.1

The figure shows the posterior probability distribution and the two lines x1−x2 = 0, x1 + x2−1 = 0, and it is confirmed
that the search is only for the range where x1−x2 > 0, x1 + x2−1 > 0.

3.7 Optimization by population annealing

This tutorial subscribes how to estimate atomic positions from the experimental diffraction data by using the population
annealing Monte Carlo method (PAMC).

30 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.7. Optimization by population annealing 31

2DMAT's Documentation, Release 2.2.0

32 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.7.1 Sample files

Sample files are available from sample/sim-trhepd-rheed/single_beam/pamc . This directory includes
the following files:

• bulk.txt

The input file of bulk.exe
• experiment.txt , template.txt
Reference files for the main program

• ref.txt

Solution file for checking whether the calucation successes or not (reference for fx.txt)
• input.toml

The input file of py2dmat
• prepare.sh , do.sh
Script files for running this tutorial

In the following, we will subscribe these files and then show the result.

3.7.2 Reference files

This tutorial uses reference files, template.txt and experiment.txt, which are the same as the previous tutorial
(Optimization by Nelder-Mead method) uses.

3.7.3 Input files

This subsection describes the input file. For details, see the manual of bayes. input.toml in the sample directory is
shown as the following

[base]
dimension = 2
output_dir = "output"

[algorithm]
name = "pamc"
label_list = ["z1", "z2"]
seed = 12345

[algorithm.param]
min_list = [3.0, 3.0]
max_list = [6.0, 6.0]
unit_list = [0.3, 0.3]

[algorithm.pamc]
numsteps_annealing = 5
bmin = 0.0
bmax = 200.0
Tnum = 21
Tlogspace = false
nreplica_per_proc = 10

(continues on next page)

3.7. Optimization by population annealing 33

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

In the following, we will briefly describe this input file. For details, see the manual of Replica exchange Monte Carlo
exchange.

• The [base] section describes the settings for a whole calculation.
– dimension is the number of variables you want to optimize. In this case, specify 2 because it optimizes
two variables.

• The [solver] section specifies the solver to use inside the main program and its settings.
– See the minsearch tutorial.

• The [algorithm] section sets the algorithm to use and its settings.
– name is the name of the algorithm you want to use, and in this tutorial we will use RXMC, so specify
exchange.

– label_list is a list of label names to be given when outputting the value of value_0x (x = 1,2).
– seed is the seed that a pseudo-random number generator uses.
– The [algorithm.param] section sets the parameter space to be explored.

∗ min_list is a lower bound and max_list is an upper bound.
∗ unit_list is step length in one MC update (deviation of Gaussian)

– The [algorithm.pamc] section sets the parameters for PAMC.
∗ numsteps_annealing is the number of interval steps between temperature decreasing.
∗ bmin, bmax are the minimum and the maximum of inversed temperature, respectively.
∗ Tnum is the number of (inversed) temperature points.
∗ When Tlogspace is true, the temperature points are distributed uniformly in the logarithmic space.
∗ nreplica_per_proc is the number of replicas (MC walkers) in one MPI process.

• The [solver] section specifies the solver to use inside the main program and its settings.
– See the Optimization by Nelder-Mead method tutorial.

34 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.7.4 Calculation

First, move to the folder where the sample file is located (hereinafter, it is assumed that you are the root directory of
2DMAT).

cd sample/sim-trhepd-rheed/single_beam/pamc

Copy bulk.exe and surf.exe as the tutorial for the direct problem.

cp ../../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

Execute bulk.exe to generate bulkP.b .

./bulk.exe

Then, run the main program (it takes a few secondes)

mpiexec -np 4 python3 ../../../../src/py2dmat_main.py input.toml | tee log.txt

Here, the calculation is performed using MPI parallel with 4 processes. (If you are using Open MPI and you request more
processes than you can use, add the --oversubscribed option to the mpiexec command.)
When executed, a folder for each rank will be created, and trial_TXXX.txt files containing the parameters evaluated
in each Monte Carlo step and the value of the objective function at each temperature (XXX is the index of points), and
result_TXXX.txt files containing the parameters actually adopted will be created. These files are concatnated into
result.txt and trial.txt.
These files have the same format: the first two columns are time (step) and the index of walker in the process, the third is
the (inversed) temperature, the fourth column is the value of the objective function, and the fifth and subsequent columns
are the parameters. The final two columns are the weight of walker (Neal-Jarzynski weight) and the index of the grand
ancestor (the replica index at the beginning of the calculation).

step walker beta fx z1 z2 weight ancestor
0 0 0.0 0.07702743614780189 5.788848278451443 3.949126663745358 1.0 0
0 1 0.0 0.08737730661436376 3.551756435031283 3.6136808356591192 1.0 1
0 2 0.0 0.04954470587051104 4.70317508724506 4.786634108937754 1.0 2
0 3 0.0 0.04671675601156148 5.893543559206865 4.959531290614713 1.0 3
0 4 0.0 0.04142014655238446 5.246719912601735 4.960709612555206 1.0 4

In the case of the sim-trhepd-rheed solver, a subfolder Log%%%%% (%%%%% is the number of MC steps) is created under
each working folder, and locking curve information etc. are recorded.
Finally, best_result.txt is filled with information about the parameter with the optimal objective function (R-
factor), the rank from which it was obtained, and the Monte Carlo step.

nprocs = 4
rank = 0
step = 71
walker = 5
fx = 0.008186713312593607
z1 = 4.225633749839847
z2 = 5.142666117413409

Finally, fx.txt stores the statistics at each temperature point:

3.7. Optimization by population annealing 35

2DMAT's Documentation, Release 2.2.0

$1: 1/T
$2: mean of f(x)
$3: standard error of f(x)
$4: number of replicas
$5: log(Z/Z0)
$6: acceptance ratio
0.0 0.06428002079611472 0.002703413400677839 40 0.0 0.795
10.0 0.061399304916174735 0.002649424392996749 40 -0.6280819199879947 0.85
20.0 0.05904248889111052 0.0031622711212952034 40 -1.2283060742855603 0.74
30.0 0.04956921148431115 0.0028298565759159633 40 -1.7991035905899855 0.67

The first column is (inversed) temperature, and the second/third ones are themean and standard error of f(x), respectively.
The fourth column is the number of replicas and the fifth one is the logarithm of the ratio of the partition functions,
log(Zn/Z0), where Z0 is the partition function at the first temperature. The sixth column is the acceptance ratio of MC
updates.
In addition, do.sh is prepared as a script for batch calculation. do.sh also checks the difference between
best_result.txt and ref.txt. I will omit the explanation below, but I will post the contents.

sh prepare.sh

./bulk.exe

time mpiexec --oversubscribe -np 4 python3 ../../../../src/py2dmat_main.py input.toml

echo diff output/fx.txt ref.txt
res=0
diff output/fx.txt ref.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else
echo TEST FAILED: output/fx.txt and ref.txt differ
false

fi

3.7.5 Visualization

By illustrating result_T.txt, you can estimate regions where the parameters with small R-factor are. In this case, the
figure result_fx.pdf and result_T.pdf of the 2D parameter space is created by using the following command.
The color of symbols of result_fx.pdf and result_T.pdf mean R-factor and β, respectively.

python3 plot_result_2d.py

Looking at the resulting diagram, we can see that the samples are concentrated near (5.25, 4.25) and (4.25, 5.25), and
that the R-factor value is small there.
Also, RockingCurve.txt is stored in each subfolder, LogXXX_YYY (XXX is an index of MC step and YYY is an
index of a replica in the MPI process). By using this, it is possible to compare with the experimental value according to
the procedure of the previous tutorial.

36 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0
z1

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

f(x
)

Fig. 3.5: Sampled parameters and R-factor. The horizontal axes is value_01 and the vertical axes is value_02 .

3.7. Optimization by population annealing 37

2DMAT's Documentation, Release 2.2.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0
z1

3.0

3.5

4.0

4.5

5.0

5.5

6.0

z2

0

25

50

75

100

125

150

175

200

Fig. 3.6: Sampled parameters and β. The horizontal axes is value_01 and the vertical axes is value_02 .

38 Chapter 3. Tutorials

2DMAT's Documentation, Release 2.2.0

3.8 Addition of a direct problem solver

3.8.1 Solver for benchmarking, analytical

py2dmat provides an analytical solver as a direct problem solver that can be used to test search algorithms.
To use the analytical solver, set name to "analytical" in the [solver] section of the input file. You can
also use the function_name parameter to select the benchmark function f(x).
For example, to use Himmelblau function, make an input file including the following:

[solver]
name = "analytical"
function_name = "himmelblau"

For details of analytical solver, please check the the reference of the analytical solver.

3.8.2 Addition of a direct problem solver

The easiest way to define and analyze a user-defined direct problem solver is to add it to the analytical solver. As an
example, we will explain the case of adding the Booth function (the minimum point is f(1, 3) = 0):

f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2.

To do so, we need to download the source code for py2dmat and edit the file for analytical solver. For instructions
on how to download the source code and run py2dmat from the source code, see how to install. analytical solver
is defined in the src/py2dmat/solver/analytical.py, so edit it.
First, define the booth function as follows:

def booth(xs: np.ndarray) -> float:
"""Booth function

it has one global minimum f(xs) = 0 at xs = [1,3].
"""

if xs.shape[0] != 2:
raise RuntimeError(

f"ERROR: booth expects d=2 input, but receives d={xs.shape[0]} one"
)

return (xs[0] + 2 * xs[1] - 7.0) ** 2 + (2 * xs[0] + xs[1] - 5.0) ** 2

Next, insert the following code in the if branch of the Solver class’s constructor (__init__) to allow users to choose
the booth function by the solver.function_name parameter of the input file.

elif function_name == "booth":
self.set_function(booth)

With this modified analytical solver, you can optimize the Booth function. For example, to optimize it by the
Nelder-Mead method, pass the following input file (input.toml)

[base]
dimension = 2
output_dir = "output"

(continues on next page)

3.8. Addition of a direct problem solver 39

https://en.wikipedia.org/wiki/Test_functions_for_optimization

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
[algorithm]
name = "minsearch"
seed = 12345

[algorithm.param]
max_list = [6.0, 6.0]
min_list = [-6.0, -6.0]
initial_list = [0, 0]

[solver]
name = "analytical"
function_name = "booth"

to src/py2dmat_main.py script as follows:

$ python3 src/py2dmat_main.py input.toml

... skipped ...

Iterations: 38
Function evaluations: 75
Solution:
x1 = 1.0000128043523089
x2 = 2.9999832920260863

40 Chapter 3. Tutorials

CHAPTER

FOUR

INPUT FILE

As the input file format, TOML format is used. The input file consists of the following six sections.
• base

– Specify the basic parameters about py2dmat .
• solver

– Specify the parameters about Solver .
• algorithm

– Specify the parameters about Algorithm .
• runner

– Specify the parameters about Runner .
• mapping

– Define the mapping from a parameter searched by Algorithm .
• limitation

– Define the limitation (constration) of parameter searched by Algorithm .
• log

– Specify parameters related to logging of solver calls.

4.1 [base] section

• dimension

Format: Integer
Description: Dimension of the search space (number of parameters to search)

• root_dir

Format: string (default: The directory where the program was executed)
Description: Name of the root directory. The origin of the relative paths to input files.

• output_dir

Format: string (default: The directory where the program was executed)
Description: Name of the directory to output the results.

41

https://toml.io/ja/

2DMAT's Documentation, Release 2.2.0

4.2 [solver] section

The name determines the type of solver. Each parameter is defined for each solver.
• name

Format: String
Description: Name of the solver. The following solvers are available.

– sim-trhepd-rheed : Solver to calculate Total-reflection high energy positron diffraction (TRHEPD) or
Reflection High Energy Electron Diffraction (RHEED) intensities.

– analytical : Solver to provide analytical solutions (mainly used for testing).
See Direct Problem Solver for details of the various solvers and their input/output files.

4.3 [algorithm] section

The name determines the type of algorithm. Each parameter is defined for each algorithm.
• name

Format: String
Description: Algorithm name. The following algorithms are available.

– minsearch : Minimum value search using Nelder-Mead method
– mapper : Grid search
– exchange : Replica Exchange Monte Carlo
– bayes : Bayesian optimization

• seed

Format: Integer
Description: A parameter to specify seeds of the pseudo-random number generator used for random
generation of initial values, Monte Carlo updates, etc.

For each MPI process, the value of seed + mpi_rank * seed_delta is given as seeds. If omitted,
the initialization is done by the Numpy’s prescribed method.

• seed_delta

Format: Integer (default: 314159)
Description: A parameter to calculate the seed of the pseudo-random number generator for each MPI
process.

For details, see the description of seed.
See Search algorithms for details of the various algorithms and their input/output files.

42 Chapter 4. Input file

https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng

2DMAT's Documentation, Release 2.2.0

4.4 [runner] section

This section sets the configuration of Runner, which bridges Algorithm and Solver. It has two subsections, map-
ping and log .

4.5 [mapping] section

This section defines the mapping from an N dimensional parameter searched by Algorithm, x, to anM dimensional
parameter used in Solver, y . In the case of N ̸= M , the parameter dimension in [solver] section should be
specified.
In the current version, the affine mapping (linear mapping + translation) y = Ax+ b is available.

• A

Format: List of list of float, or a string (default: [])
Description: N ×M matrix A. An empty list [] is a shorthand of an identity matrix.

If you want to set it by a string, arrange the elements of the matrix separated with spaces and newlines (see
the example).

• b

Format: List of float, or a string (default: [])
Description: M dimensional vector b. An empty list [] is a shorthand of a zero vector.

If you want to set it by a string, arrange the elements of the vector separated with spaces.
For example, both

A = [[1,1], [0,1]]

and

A = """
1 1
0 1
"""

mean

A =

(
1 1
0 1

)
.

4.6 [limitation] section

This section defines the limitation (constraint) in an N dimensional parameter searched by Algorithm, x, in addition
of min_list and max_list.
In the current version, a linear inequation with the form Ax+ b > 0 is available.

• co_a

Format: List of list of float, or a string (default: [])

4.4. [runner] section 43

2DMAT's Documentation, Release 2.2.0

Description: N ×M matrix A. An empty list [] is a shorthand of an identity matrix.
If you want to set it by a string, arrange the elements of the matrix separated with spaces and newlines (see
the example).

• co_b

Format: List of float, or a string (default: [])
Description: M dimensional vector b. An empty list [] is a shorthand of a zero vector.

If you want to set it by a string, arrange the elements of the vector separated with spaces.
For example, both

A = [[1,1], [0,1]]

and

A = """
1 1
0 1
"""

mean

A =

(
1 1
0 1

)
.

4.7 [log] section

Setting parametrs related to logging of solver calls.
• filename

Format: String (default: “runner.log”)
Description: Name of log file.

• interval

Format: Integer (default: 0)
Description: The log will be written out every time solver is called interval times.

If the value is less than or equal to 0, no log will be written.
• write_result

Format: Boolean (default: false)
Description: Whether to record the output from solver.

• write_input

Format: Boolean (default: false)
Description: Whether to record the input to solver.

44 Chapter 4. Input file

CHAPTER

FIVE

OUTPUT FILES

See Direct Problem Solver and Search algorithms for the output files of each Solver and Algorithm.

5.1 Common file

5.1.1 time.log

The total time taken for the calculation for each MPI rank is outputted. These files will be output under the subfolders of
each rank respectively. The time taken to pre-process the calculation, the time taken to compute, and the time taken to
post-process the calculation are listed in the prepare , run , and post sections.
The following is an example of the output.

#prepare
total = 0.007259890999989693

#run
total = 1.3493346729999303
- file_CM = 0.0009563499997966574
- submit = 1.3224223930001244

#post
total = 0.000595873999941432

5.1.2 runner.log

The log information about solver calls for each MPI rank is outputted. These files will be output under the subfolder of
each rank. The output is only available when the runner.log.interval parameter is a positive integer in the input.

• The first column is the serial number of the solver call.
• The second column is the time elapsed since the last solver call.
• The third column is the time elapsed since the start of the calculation.

The following is an example of the output.

$1: num_calls
$2: elapsed_time_from_last_call
$3: elapsed_time_from_start

1 0.0010826379999999691 0.0010826379999999691
2 6.96760000000185e-05 0.0011523139999999876
3 9.67080000000009e-05 0.0012490219999999885

(continues on next page)

45

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
4 0.00011765699999999324 0.0013666789999999818
5 4.965899999997969e-05 0.0014163379999999615
6 8.666900000003919e-05 0.0015030070000000006

...

46 Chapter 5. Output files

CHAPTER

SIX

SEARCH ALGORITHMS

py2dmat searches the parameter space X ∋ x by using the search algorithm Algorithm and the result of Solver
f(x). In this section, the search algorithms implemented in py2dmat are described.

6.1 Nelder-Mead method minsearch

When minsearch is selcted, the optimization by the Nelder-Mead method (a.k.a. downhill simplex method) will be
done. In the Nelder-Mead method, the dimension of the parameter space is D, and the optimal solution is searched by
systematically moving pairs of D + 1 coordinate points according to the value of the objective function at each point.
An important hyperparameter is the initial value of the coordinates. Although it is more stable than the simple steepest
descent method, it still has the problem of being trapped in the local optimum solution, so it is recommended to repeat
the calculation with different initial values several times to check the results.
In 2DMAT, the Scipy’s function scipy.optimize.minimize(method="Nelder-Mead") is used. For de-
tails, see the official document .

6.1.1 Preparation

You will need to install scipy .:

python3 -m pip install scipy

6.1.2 Input parameters

It has subsections param and minimize.

[param] section

• initial_list

Format: List of float. The length should match the value of dimension.
Description: Initial value of the parameter. If not defined, it will be initialized uniformly and randomly.

• unit_list

Format: List of float. The length should match the value of dimension.

47

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference

2DMAT's Documentation, Release 2.2.0

Description: Units for each parameter.
In the search algorithm, each parameter is divided by each of these values to perform a simple dimensionless
and normalization. If not defined, the value is 1.0 for all dimensions.

– min_list

Format: List of float. Length should be equal to dimension.
Description: Minimum value of each parameter.

When a parameter falls below this value during the Nelson-Mead method, the solver is not evaluated and
the value is considered infinite.

– max_list

Format: List of float. Length should be equal to dimension.
Description: Maximum value of each parameter.

When a parameter exceeds this value during the Nelson-Mead method, the solver is not evaluated and
the value is considered infinite.

[minimize] section

Set the hyperparameters for the Nelder-Mead method. See the documentation of scipy.optimize.minimize for details.
• initial_scale_list

Format: List of float. The length should match the value of dimension.
Description: The difference value that is shifted from the initial value in order to create the initial simplex for the
Nelder-Mead method. The initial_simplex is given by the sum of initial_list and the dimension
of the initial_list plus one component of the initial_scale_list. If not defined, scales at each
dimension are set to 0.25.

• xatol

Format: Float (default: 1e-4)
Description: Parameters used to determine convergence of the Nelder-Mead method.

• fatol

Format: Float (default: 1e-4)
Description: Parameters used to determine convergence of the Nelder-Mead method.

• maxiter

Format: Integer (default: 10000)
Description: Maximum number of iterations for the Nelder-Mead method.

• maxfev

Format: Integer (default: 100000)
Description: Maximum number of times to evaluate the objective function.

48 Chapter 6. Search algorithms

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html

2DMAT's Documentation, Release 2.2.0

6.1.3 Output files

SimplexData.txt

Outputs information about the process of finding the minimum value. The first line is a header, the second and subsequent
lines are step, the values of variables defined in string_list in the [solver] - [param] sections of the input
file, and finally the value of the function.
The following is an example of the output.

#step z1 z2 z3 R-factor
0 5.25 4.25 3.5 0.015199251773721183
1 5.25 4.25 3.5 0.015199251773721183
2 5.229166666666666 4.3125 3.645833333333333 0.013702918021532375
3 5.225694444444445 4.40625 3.5451388888888884 0.012635279378225261
4 5.179976851851851 4.348958333333334 3.5943287037037033 0.006001660077530159
5 5.179976851851851 4.348958333333334 3.5943287037037033 0.006001660077530159

res.txt

The value of the final objective function and the value of the parameters at that time are described. The objective function
is listed first, followed by the values of the variables defined in string_list in the [solver] - [param] sections
of the input file, in that order.
The following is an example of the output.

fx = 7.382680568652868e-06
z1 = 5.230524973874179
z2 = 4.370622919269477
z3 = 3.5961444501081647

6.2 Direct parallel search mapper

mapper_mpi is an algorithm to search for the minimum value by computing f(x) on all the candidate points in the
parameter space prepared in advance. In the case of MPI execution, the set of candidate points is divided into equal parts
and automatically assigned to each process to perform trivial parallel computation.

6.2.1 Preparation

For MPI parallelism, you need to install mpi4py.:

python3 -m pip install mpi4py

6.2. Direct parallel search mapper 49

https://mpi4py.readthedocs.io/en/stable/

2DMAT's Documentation, Release 2.2.0

6.2.2 Input parameters

[param] section

In this section, the search parameter space is defined.
If mesh_path is defined, it is read from a mesh file. In the mesh file, one line defines one point in the parameter space,
the first column is the data number, and the second and subsequent columns are the coordinates of each dimension.
If mesh_path is not defined, min_list, max_list, and num_list are used to create an evenly spaced grid for
each parameter.

• mesh_path

Format: String
Description: Path to the mesh definition file.

• min_list

Format: List of float. The length should match the value of dimension.
Description: The minimum value the parameter can take.

• max_list

Format: List of float.The length should match the value of dimension.
Description: The maximum value the parameter can take.

• num_list

Format: List of integer. The length should match the value of dimension.
Description: The number of grids the parametar can take at each dimension.

6.2.3 Refernce file

Mesh definition file

Define the grid space to be explored in this file. 1 + dimension columns are required. The first column is the index of
the mesh, and the second and subsequent columns are the values of parameter.
A sample file for two dimensions is shown below.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

50 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

6.2.4 Output file

ColorMap.txt

This file contains the candidate parameters for each mesh and the R-factor at that time. The mesh data is listed in the
order of the variables defined in string_list in the [solver] - [param] sections of the input file, and the value
of the R-factor is listed last.
Below, output example is shown.

6.000000 6.000000 0.047852
6.000000 5.750000 0.055011
6.000000 5.500000 0.053190
6.000000 5.250000 0.038905
6.000000 5.000000 0.047674
6.000000 4.750000 0.065919
6.000000 4.500000 0.053675
6.000000 4.250000 0.061261
6.000000 4.000000 0.069351
6.000000 3.750000 0.071868
...

6.3 Replica exchange Monte Carlo exchange

exchange explores the parameter space by using the replica exchange Monte Carlo (RXMC) method.

6.3.1 Preparation

mpi4py should be installed.

python3 -m pip install mpi4py

6.3.2 Input parameters

This has two subsections algorithm.param and algorithm.exchange .

[algorithm.param]

This defines a space to be explored. When mesh_path key is defined the discrete space is used. Otherwise, continuous
space is used.

• Continuous space
– initial_list

Format: List of float. Length should be equal to dimension.
Description: Initial value of parameters. If not defined, these will be initialize randomly.

– unit_list

Format: List of float. Length should be equal to dimension.

6.3. Replica exchange Monte Carlo exchange 51

https://mpi4py.readthedocs.io/en/stable/

2DMAT's Documentation, Release 2.2.0

Description: Unit length of each parameter. Algorithm makes parameters dimensionless and normalized
by dividing these by unit_list. If not defined, each component will be 1.0.

– min_list

Format: List of float. Length should be equal to dimension.
Description: Minimum value of each parameter.

When a parameter falls below this value during the Monte Carlo search, the solver is not evaluated and
the value is considered infinite.

– max_list

Format: List of float. Length should be equal to dimension.
Description: Maximum value of each parameter.

When a parameter exceeds this value during the Monte Carlo search, the solver is not evaluated and the
value is considered infinite.

• Discrete space
– mesh_path

Format: string
Description: Path to the mesh definition file.

– neighborlist_path

Format: string
Description: Path to the neighborhood-list file.

[algorithm.exchange]

• numsteps

Format: Integer
Description: The number of Monte Carlo steps.

• numsteps_exchange

Format: Integer
Description: The number of interval Monte Carlo steps between replica exchange.

• Tmin

Format: Float
Description: The minimum value of the “temperature” (T).

• Tmax

Format: Float
Description: The maximum value of the “temperature” (T).

• bmin

Format: Float
Description: The minimum value of the “inverse temperature” (β = 1/T). One of the “temperature” and “inverse
temperature” should be defined.

52 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

• bmax

Format: Float
Description: The maximum value of the “inverse temperature” (β = 1/T). One of the “temperature” and “inverse
temperature” should be defined.

• Tlogspace

Format: Boolean (default: true)
Description: Whether to assign “temperature” to replicas equally spaced in the logarithmic space or not.

• nreplica_per_proc

Format: Integer (default: 1)
Description: The number of replicas in a MPI process.

6.3.3 Reference file

Mesh definition file

Define the grid space to be explored in this file. The first column is the index of the mesh, and the second and subsequent
columns are the values of variables. Note that the index of the mesh will be ignored for this “algorithm”.
Below, a sample file is shown.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

Neighborhood-list file

Before searching in the discrete space by Markov Chain Monte Carlo method, we should define “neighborhoods” for each
point i, which are points that a walker can move from i A neighborhood-list file defines the list of neighborhoods. In this
file, the index of an initial point i is specified by the first column, and the indices of final points j are specified by the
second and successive columns.
An utility tool, py2dmat_neighborlist is available for generating a neighborhood-list file from a mesh file. For
details, please see Related Tools.

0 1 2 3
1 0 2 3 4
2 0 1 3 4 5
3 0 1 2 4 5 6 7
4 1 2 3 5 6 7 8
5 2 3 4 7 8 9
...

6.3. Replica exchange Monte Carlo exchange 53

2DMAT's Documentation, Release 2.2.0

6.3.4 Output files

RANK/trial.txt

This file stores the suggested parameters and the corresponding value returned from the solver for each replica. The first
column is the index of the MC step. The second column is the index of the walker in the process. The third column is
the temperature of the replica. The fourth column is the value of the solver. The remaining columns are the coordinates.
Example:

step walker T fx z1 z2
0 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0 0.004999999999999999 0.0758494287185766 2.811346329442423 3.691101784194861
2 0 0.004999999999999999 0.08566823949124412 3.606664760390988 3.2093903670436497
3 0 0.004999999999999999 0.06273922648753057 4.330900869594549 4.311333132184154

RANK/result.txt

This file stores the sampled parameters and the corresponding value returned from the solver for each replica. This has
the same format as trial.txt.

step walker T fx z1 z2
0 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
2 0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
3 0 0.004999999999999999 0.06273922648753057 4.330900869594549 4.311333132184154

best_result.txt

The optimal value of the solver and the corresponding parameter among the all samples.

nprocs = 4
rank = 2
step = 65
fx = 0.008233957976993406
z1 = 4.221129370933539
z2 = 5.139591716517661

result_T#.txt

This file stores samples for each temperature (# is replaced with the index of temperature). The first column is the index
of the MC step. The second column is the index of the walker. The third column is the value of the solver. The remaining
columns are the coordinates.

T = 1.0
0 15 28.70157662892569 3.3139009347685118 -4.20946994566609
1 15 28.70157662892569 3.3139009347685118 -4.20946994566609
2 15 28.70157662892569 3.3139009347685118 -4.20946994566609
3 15 28.98676409223712 3.7442621319489637 -3.868754990884034

54 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

Algorithm

6.3.5 Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) sampling explores the parameter space by moving walkers x⃗ stochastically
according to the weight function W (x⃗). For the weight function, the Boltzmann factor W (x⃗) = e−f(x⃗)/T is generally
adopted, where T > 0 is the “temperature.” It is impossible in the many cases, unfortunately, to sample walkers according
to W directly. Insteadly, the MCMC method moves walkers slightly and generates a time series {x⃗t} such that the
distribution of the walkers obeysW . Let us call the transision probability from x⃗ to x⃗′ as p(x⃗′|x⃗). When p is determined
by the following condition (“the balance condition”)

W (x⃗′) =
∑
x⃗

p(x⃗′|x⃗)W (x⃗),

the distribution of the generated time series {x⃗t} will converges to W (x⃗)1. Practically, the stronger condition (“the
detailed balance condition”)

p(x⃗|x⃗′)W (x⃗′) = W (x⃗)p(x⃗′|x⃗)

is usually imposed. The detailed balance condition returns to the balance condition by taking the summation of x⃗.
2DMAT adopts the Metropolis-Hasting (MH) method for solving the detailed balance condition. The MH method splits
the transition process into the suggestion process and the acceptance process.

1. Generate a candidate x⃗ with the suggestion probability P (x⃗|x⃗t).
• As P , use a simple distribution such as the normal distribution with centered at x.

2. Accept the candidate x⃗ with the acceptance probability Q(x⃗|x⃗t).
• If accepted, let x⃗t+1 be vec{x}.
• Otherwise, let x⃗t+1 be vec{x}_t.

Thewhole transision probability is the product of these two ones, p(x⃗|x⃗t) = P (x⃗|x⃗t)Q(x⃗|x⃗t). The acceptance probability
Q(x⃗|x⃗t) is defined as

Q(x⃗|x⃗t) = min
[
1,

W (x⃗)P (x⃗t|x⃗)
W (x⃗t)P (x⃗|x⃗t)

]
.

It is easy to verify that the detailed balance condition is satisfied by substituting it into the detailed balance condition
equation.
When adopting the Boltzmann factor for the weight and a symmetry distribution P (x⃗|x⃗t) = P (x⃗t|x⃗) for the suggestion
probability, the acceptance probability Q will be the following simple form:

Q(x⃗|x⃗t) = min
[
1,

W (x⃗)

W (x⃗t)

]
= min

[
1, exp

(
−f(x⃗)− f(x⃗t)

T

)]
.

By saying ∆f = f(x⃗)− f(x⃗t) and using the fact Q = 1 for ∆f ≤ 0, the procedure of MCMC with the MH algorithm
is the following:

1. Choose a candidate from near the current position and calculate f and ∆f .
2. If ∆f ≤ 0, that is, the walker is descending, accept it.
3. Otherwise, accept it with the probability Q = e−∆f/T .
4. Repeat 1-3.

The solution is given as the point giving the minimum value of f(x⃗). The third process of the above procedure endures
that walkers can climb over the hill with a height of∆f ∼ T , the MCMC sampling can escape from local minima.

1 To be precisely, the non-periodicality and the ergodicity are necessary for convergence.

6.3. Replica exchange Monte Carlo exchange 55

2DMAT's Documentation, Release 2.2.0

6.3.6 Replica exchange Monte Carlo

The “temperature” T is one of the most important hyper parameters in the MCMC sampling. The MCMC sampling can
climb over the hill with a height of T but cannot easily escape from the deeper valley than T . It is why we should increase
the temperature in order to avoid stuck to local minima. On the other hand, since walkers cannot see the smaller valleys
than T , the precision of the obtained result min f(x⃗) becomes about T , and it is necessary to decrease the temperature
in order to achieve more precise result. This dilemma leads us that we should tune the temperature carefully.
One of the ways to overcome this problem is to update temperature too. For example, simulated annealing decreases
temperature as the iteration goes. Another algorithm, simulated tempering, treats temperature as another parameter to be
sampled, not a fixed hyper parameter, and update temperature after some iterations according to the (detailed) balance
condition. Simulated tempering studies the details of a valley by cooling and escapes from a valley by heating. Replica
exchange Monte Carlo (RXMC), also known as parallel tempering, is a parallelized version of the simulated tempering.
In this algorithm, several copies of a system with different temperature, called as replicas, will be simulated in parallel.
Then, with some interval of steps, each replica exchanges temperature with another one according to the (detailed) balance
condition. As the simulated tempering does, RXMC can observe the details of a valley and escape from it by cooling
and heating. Moreover, because each temperature is assigned to just one replica, the temperature distribution will not
be biased. Using more replicas narrows the temperature interval, and increases the acceptance ratio of the temperature
exchange. This is why this algorithm suits for the massively parallel calculation.
It is recommended that users perform minsearch optimization starting from the result of exchange, because the
RXMC result has uncertainty due to temperature.

6.4 Population Annealing Monte Carlo pamc

pamc explores the parameter space by using the Population Annealing Monte Carlo (PAMC) method.

6.4.1 Preparation

mpi4py should be installed for the MPI parallelization

python3 -m pip install mpi4py

6.4.2 Input parameters

This has two subsections algorithm.param and algorithm.pamc .

[algorithm.param]

This defines a space to be explored. When mesh_path key is defined the discrete space is used. Otherwise, continuous
space is used.

• Continuous space
– initial_list

Format: List of float. Length should be equal to dimension.
Description: Initial value of parameters. If not defined, these will be initialize randomly.

– unit_list

Format: List of float. Length should be equal to dimension.

56 Chapter 6. Search algorithms

https://mpi4py.readthedocs.io/en/stable/

2DMAT's Documentation, Release 2.2.0

Description: Unit length of each parameter. Algorithm makes parameters dimensionless and normalized
by dividing these by unit_list. If not defined, each component will be 1.0.

– min_list

Format: List of float. Length should be equal to dimension.
Description: Minimum value of each parameter.

When a parameter falls below this value during the Monte Carlo search, the solver is not evaluated and
the value is considered infinite.

– max_list

Format: List of float. Length should be equal to dimension.
Description: Maximum value of each parameter.

When a parameter exceeds this value during the Monte Carlo search, the solver is not evaluated and the
value is considered infinite.

• Discrete space
– mesh_path

Format: string
Description: Path to the mesh definition file.

– neighborlist_path

Format: string
Description: Path to the neighborhood-list file.

[algorithm.pamc]

• numsteps

Format: Integer
Description: The number of Monte Carlo steps.

• numsteps_annealing

Format: Integer
Description: The number of interval Monte Carlo steps between lowering “temperature”.

• numT

Format: Integer
Description: The number of “temperature” points.

• Tmin

Format: Float
Description: The minimum value of the “temperature” (T).

• Tmax

Format: Float
Description: The maximum value of the “temperature” (T).

6.4. Population Annealing Monte Carlo pamc 57

2DMAT's Documentation, Release 2.2.0

• bmin

Format: Float
Description: The minimum value of the “inverse temperature” (β = 1/T). One of the “temperature” and “inverse
temperature” should be defined.

• bmax

Format: Float
Description: The maximum value of the “inverse temperature” (β = 1/T). One of the “temperature” and “inverse
temperature” should be defined.

• Tlogspace

Format: Boolean (default: true)
Description: Whether to assign “temperature” to replicas equally spaced in the logarithmic space or not.

• nreplica_per_proc

Format: Integer (default: 1)
Description: The number of replicas in a MPI process.

• resampling_interval

Format: Integer (default: 1)
Description: The number of annealing processes between resampling of the replicas.

• fix_num_replicas

Format: Boolean (default: true)
Description: Whether to fix the number of replicas or not on resampling.

About the number of steps

Specify just two ofnumstep, numsteps_annealing, andnumT. The value of the remaining one will be determined
automatically.

6.4.3 Reference file

Mesh definition file

Define the grid space to be explored in this file. The first column is the index of the mesh, and the second and subsequent
columns are the values of variables. Note that the index of the mesh will be ignored for this “algorithm”.
Below, a sample file is shown.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000

(continues on next page)

58 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
9 6.000000 4.000000
...

Neighborhood-list file

Before searching in the discrete space by Markov Chain Monte Carlo method, we should define “neighborhoods” for each
point i, which are points that a walker can move from i A neighborhood-list file defines the list of neighborhoods. In this
file, the index of an initial point i is specified by the first column, and the indices of final points j are specified by the
second and successive columns.
An utility tool, py2dmat_neighborlist is available for generating a neighborhood-list file from a mesh file. For
details, please see Related Tools.

0 1 2 3
1 0 2 3 4
2 0 1 3 4 5
3 0 1 2 4 5 6 7
4 1 2 3 5 6 7 8
5 2 3 4 7 8 9
...

6.4.4 Output files

RANK/trial_T#.txt

This file stores the suggested parameters and the corresponding value returned from the solver for each temperature point
(specified by #). The first column (step) is the index of the MC step. The second column (walker) is the index of
the walker in the process. The third column (beta) is the inverse temperature of the replica. The fourth column (fx)
is the value of the solver. The fifth - (4+dimension)-th columns are the coordinates. The last two columns (weight and
ancestor) are the Neal-Jarzynsky weight and the grand-ancestor of the replica.
Example:

step walker beta fx x1 weight ancestor
0 0 0.0 73.82799488298886 8.592321856342956 1.0 0
0 1 0.0 13.487174782058675 -3.672488908364282 1.0 1
0 2 0.0 39.96292704464803 -6.321623766458111 1.0 2
0 3 0.0 34.913851603463 -5.908794428939206 1.0 3
0 4 0.0 1.834671825646121 1.354500581633733 1.0 4
0 5 0.0 3.65151610695736 1.910894059585031 1.0 5
...

6.4. Population Annealing Monte Carlo pamc 59

2DMAT's Documentation, Release 2.2.0

RANK/trial.txt

This is a combination of all the trial_T#.txt in one.

RANK/result_T#.txt

This file stores the sampled parameters and the corresponding value returned from the solver for each replica and each
temperature. This has the same format as trial.txt.

step walker beta fx x1 weight ancestor
0 0 0.0 73.82799488298886 8.592321856342956 1.0 0
0 1 0.0 13.487174782058675 -3.672488908364282 1.0 1
0 2 0.0 39.96292704464803 -6.321623766458111 1.0 2
0 3 0.0 34.913851603463 -5.908794428939206 1.0 3
0 4 0.0 1.834671825646121 1.354500581633733 1.0 4
0 5 0.0 3.65151610695736 1.910894059585031 1.0 5
...

RANK/result.txt

This is a combination of all the result_T#.txt in one.

best_result.txt

The optimal value of the solver and the corresponding parameter among the all samples.

nprocs = 4
rank = 2
step = 65
fx = 0.008233957976993406
z1 = 4.221129370933539
z2 = 5.139591716517661

fx.txt

This file stores statistical metrics over the all replicas for each temperature. The first column is inverse temperature. The
second and third column are the expectation value and the standard error of the solver’s output (f(x)), respectively. The
fourth column is the number of replicas. The fifth column is the logarithmic of the ratio between the normalization factors
(partition functions)

log Z

Z0
= log

∫
dxe−βf(x) − log

∫
dxe−β0f(x),

where β0 is the minimum value of β used in the calculation. The sixth column is the acceptance ratio of MC updates.

$1: 1/T
$2: mean of f(x)
$3: standard error of f(x)
$4: number of replicas
$5: log(Z/Z0)
$6: acceptance ratio
0.0 33.36426034198166 3.0193077565358273 100 0.0 0.9804

(continues on next page)

60 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
0.1 4.518006242920819 0.9535301415484388 100 -1.2134775491597027 0.9058
0.2 1.5919146358616842 0.2770369776964151 100 -1.538611313376179 0.9004
...

6.4.5 Algorithm

Goal

When the weight of the configuration x under some parameter βi is given as fi(x) (e.g., the Bolzmann factor fi(x) =
exp[−βiE(x)]), the expectation value of A is defined as

⟨A⟩i =
∫
dxA(x)fi(x)∫
dxfi(x)

=
1

Z

∫
dxA(x)fi(x) =

∫
dxA(x)f̃i(x),

where Z =
∫
dxfi(x) is the normalization factor (partition function) and f̃(x) = f(x)/Z is the probability of x.

Our goal is to numerically calculate the expectation value for each βi and the (ratio of) the normalization factor.

Annealed Importance Sampling (AIS) [1]

First, we introduce a series of configurations {xi} obeying the following joint probability

f̃(x0, x1, . . . , xn) = f̃n(xn)T̃n(xn, xn−1)T̃n−1(xn−1, xn−2) · · · T̃1(x1, x0),

with

T̃i(xi, xi−1) = Ti(xi−1, xi)
f̃i(xi−1)

f̃i(xi)
,

where Ti(x, x
′) is a transition probability from x to x′ under βi holding the balance condition,∫

dxf̃i(x)Ti(x, x
′) = f̃i(x

′).

It turns out that f̃n(xn) is the marginal distribution of f̃(x0, x1, . . . , xn), that is,

f̃n(xn) =

∫ n−1∏
i=0

dxif̃(x0, x1, . . . , xn),

from ∫
dxi−1T̃i(xi, xi−1) =

∫
dxi−1f̃i(xi−1)Ti(xi−1, xi)/f̃i(xi) = 1.

Consequently, ⟨A⟩n is represented by using the extended configuration {xi} as

⟨A⟩n ≡
∫

dxnA(xn)f̃n(xn)

=

∫ ∏
i

dxiA(xn)f̃(x0, x1, . . . , xn).

Unfortunately, it is difficult to generate directly a series of configurations {xi} following the distribution
f̃(x0, x1, . . . , xn). Then, instead of f̃(x0, x1, . . . , xn), we consider {xi} obeying the joint distribution

g̃(x0, x1, . . . , xn) = f̃0(x0)T1(x0, x1)T2(x1, x2) . . . Tn(xn−1, xn),

by using the following the following scheme:

6.4. Population Annealing Monte Carlo pamc 61

2DMAT's Documentation, Release 2.2.0

1. Generete x0 from the initial distribution f̃0(x)
2. Generate xi+1 from xi through Ti+1(xi, xi+1)

By using the reweighting method (or importance sampling method), ⟨A⟩n is rewritten as

⟨A⟩n =

∫ ∏
i

dxiA(xn)f̃(x0, x1, . . . , xn)

=

∫ ∏
i

dxiA(xn)
f̃(x0, x1, . . . , xn)

g̃(x0, x1, . . . , xn)
g̃(x0, x1, . . . , xn)

=
〈
Af̃
/
g̃
〉
g,n

.

Because the ratio between f̃ and g̃ is

f̃(x0, . . . , xn)

g̃(x0, . . . , xn)
=

f̃n(xn)

f̃0(x0)

n∏
i=1

T̃i(xi, xi−1)

T (xi−1, xi)

=
f̃n(xn)

f̃0(x0)

n∏
i=1

f̃i(xi−1)

f̃i(xi)

=
Z0

Zn

fn(xn)

f0(x0)

n∏
i=1

fi(xi−1)

fi(xi)

=
Z0

Zn

n−1∏
i=0

fi+1(xi)

fi(xi)

≡ Z0

Zn
wn(x0, x1, . . . , xn),

the form of the expectation value will be

⟨A⟩n =
〈
Af̃
/
g̃
〉
g,n

=
Z0

Zn
⟨Awn⟩g,n.

Finally, the ratio between the normalization factors Zn/Z0 can be evaluated as

Zn

Z0
= ⟨wn⟩g,n,

and therefore the expectation value of A can be evaluated as a weighted arithmetic mean:

⟨A⟩n =
⟨Awn⟩g,n
⟨wn⟩g,n

.

This weight wn is called as the Neal-Jarzynski weight.

population annealing (PA) [2]

Although theAISmethod can estimate the expectation values ofA for each parameterβ as the form ofweighted arithmetic
mean, the variance of weightsw is generally large and then the accuracy of the result gets worse. In order to overcome this
problem, the population annealing Monte Carlo (PAMC) method resamples all the replicas according to the probability
p(k) = w(k)/

∑
k w

(k) at some periods and resets all the weights to unity.
The following pseudo code describes the scheme of PAMC:

62 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

for k in range(K):
w[0, k] = 1.0
x[0, k] = draw_from(β[0])

for i in range(1, N):
for k in range(K):

w[i, k] = w[i-1, k] * (f(x[i-1,k], β[i]) / f(x[i-1,k], β[i-1]))
if i % interval == 0:

x[i, :] = resample(x[i, :], w[i, :])
w[i, :] = 1.0

for k in range(K):
x[i, k] = transfer(x[i-1, k], β[i])

a[i] = sum(A(x[i,:]) * w[i,:]) / sum(w[i,:])

There are two resampling methods: one with a fixed number of replicas[2] and one without[3].

References

[1] R. M. Neal, Statistics and Computing 11, 125-139 (2001).
[2] K. Hukushima and Y. Iba, AIP Conf. Proc. 690, 200 (2003).
[3] J. Machta, PRE 82, 026704 (2010).

6.5 Bayse optimization bayes

bayes is an Algorithm that uses Bayesian optimization to perform parameter search. The implementation is based
on PHYSBO.

6.5.1 Preparation

You will need to install PHYSBO beforehand.:

python3 -m pip install physbo

If mpi4py is installed, MPI parallel computing is possible.

6.5.2 Input parameters

[algorithm.param] section

In this section, the search parameter space is defined.
If mesh_path is defined, it will be read from a mesh file. In a mesh file, one line gives one point in the parameter space,
the first column is the data number, and the second and subsequent columns are the coordinates of each dimension.
If mesh_path is not defined, min_list, max_list, and num_list are used to create an evenly spaced grid for
each parameter.

• mesh_path

Format: String
Description: The path to a reference file that contains information about the mesh data.

6.5. Bayse optimization bayes 63

https://www.pasums.issp.u-tokyo.ac.jp/physbo/en
https://www.pasums.issp.u-tokyo.ac.jp/physbo/en
https://mpi4py.readthedocs.io/en/stable/

2DMAT's Documentation, Release 2.2.0

• min_list

Format: List of float. The length should match the value of dimension.
Description: The minimum value the parameter can take.

• max_list

Format: List of float.The length should match the value of dimension.
Description: The maximum value the parameter can take.

• num_list

Format: List of integer. The length should match the value of dimension.
Description: The number of grids the parametar can take at each dimension.

[algorithm.bayes] section

The hyper parameters are defined.
• random_max_num_probes

Format: Integer (default: 20)
Description: Number of random samples to be taken before Bayesian optimization (random sampling is needed if
parameters and scores are not available at the beginning).

• bayes_max_num_probes

Format: Integer (default: 40)
Description: Number of times to perform Bayesian optimization.

• score

Format: String (default: TS)
Description: Parameter to specify the score function. EI (expected improvement), PI (probability of improve-
ment), and TS (Thompson sampling) can be chosen.

• interval

Format: Integer (default: 5)
Description: The hyperparameters are learned at each specified interval. If a negative value is specified, no hyper-
parameter learning will be performed. If a value of 0 is specified, hyperparameter learning will be performed only
in the first step.

• num_rand_basis

Format: Integer (default: 5000)
Description: Number of basis functions; if 0 is specified, the normal Gaussian process is performed without using
the Bayesian linear model.

64 Chapter 6. Search algorithms

2DMAT's Documentation, Release 2.2.0

6.5.3 Reference file

Mesh definition file

Define the grid space to be explored in this file. The first column is the index of the mesh, and the second and subsequent
columns are the values of variables defined in string_list in the [solver.param] section.
Below, a sample file is shown.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

6.5.4 Output files

BayesData.txt

At each step of the optimization process, the values of the parameters and the corresponding objective functions are listed
in the order of the optimal parameters so far and the searched parameters at that step.

#step z1 z2 R-factor z1_action z2_action R-factor_action
0 4.75 4.5 0.05141906746102885 4.75 4.5 0.05141906746102885
1 4.75 4.5 0.05141906746102885 6.0 4.75 0.06591878368102033
2 5.5 4.25 0.04380131351780189 5.5 4.25 0.04380131351780189
3 5.0 4.25 0.02312528177606794 5.0 4.25 0.02312528177606794
...

6.5.5 Algorithm Description

Bayesian optimization (BO) is an optimization algorithm that uses machine learning as an aid, and is particularly powerful
when it takes a long time to evaluate the objective function.
In BO, the objective function f(x⃗) is approximated by a model function (often a Gaussian process) g(x⃗) that is quick to
evaluate and easy to optimize. The g is trained to reproduce well the value of the objective function {x⃗i}Ni=1 at some
suitably predetermined points (training data set) {f(x⃗i)}Ni=1.
At each point in the parameter space, we propose the following candidate points for computation x⃗N+1, where the
expected value of the trained g(x⃗) value and the “score” (acquition function) obtained from the error are optimal. The
training is done by evaluating f(x⃗N+1), adding it to the training dataset, and retraining g. After repeating these searches,
the best value of the objective function as the optimal solution will be returned.
A point that gives a better expected value with a smaller error is likely to be the correct answer, but it does not contribute
much to improving the accuracy of the model function because it is considered to already have enough information. On
the other hand, a point with a large error may not be the correct answer, but it is a place with little information and is
considered to be beneficial for updating the model function. Selecting the former is called “exploition,” while selecting
the latter is called “exploration,” and it is important to balance both. The definition of “score” defines how to choose
between them.

6.5. Bayse optimization bayes 65

https://en.wikipedia.org/wiki/Bayesian_optimization

2DMAT's Documentation, Release 2.2.0

In 2DMAT, we use PHYSBO as a library for Bayesian optimization. PHYSBO, like mapper_mpi, computes a “score”
for a predetermined set of candidate points, and proposes an optimal solution. MPI parallel execution is possible by
dividing the set of candidate points. In addition, we use a kernel that allows us to evaluate the model function and
thus calculate the “score” with a linear amount of computation with respect to the number of training data points N . In
PHYSBO, “expected improvement (EI)”, “probability of improvement (PI)”, and “Thompson sampling (TS)” are available
as “score” functions.

66 Chapter 6. Search algorithms

https://www.pasums.issp.u-tokyo.ac.jp/physbo/en

CHAPTER

SEVEN

DIRECT PROBLEM SOLVER

Direct problem solver Solver calculates the function to be optimized f(x) at the search parameter x.

7.1 analytical solver

analytical is a Solver that computes a predefined benchmark function f(x) for evaluating the performance of
search algorithms.

7.1.1 Input parameters

The funtion_name parameter in the solver section specifies the function to use.
• function_name

Format: string
Description: Function name. The following functions are available.

– quadratics

∗ Quadratic function

f(x⃗) =

N∑
i=1

x2
i

∗ The optimized value f(x⃗∗) = 0 (∀ix∗
i = 0)

– rosenbrock

∗ Rosenbrock function

f(x⃗) =

N−1∑
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
∗ The optimized value f(x⃗∗) = 0 (∀ix∗

i = 1)

– ackley

∗ Ackley function

f(x⃗) = 20 + e− 20 exp

−0.2

√√√√ 1

N

N∑
i=1

x2
i

− exp
[
1

N
cos (2πxi)

]
∗ The optimized value f(x⃗∗) = 0 (∀ix∗

i = 0)

67

https://en.wikipedia.org/wiki/Rosenbrock_function
https://en.wikipedia.org/wiki/Ackley_function

2DMAT's Documentation, Release 2.2.0

– himmerblau

∗ Himmerblau function

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2

∗ The optimized value f(3, 2) = f(−2.805118, 3.131312) = f(−3.779310,−3.283186) =
f(3.584428,−1.848126) = 0

7.2 sim-trhepd-rheed solver

sim-trhepd-rheed is a Solver that uses sim-trhepd-rheed to calculate the diffraction rocking curve from the
atomic position x and returns the deviation from the experimental rocking curve as f(x).

7.2.1 Preparation

You will need to install sim-trhepd-rheed beforehand.
1. Download the source code from the official sim-trhepd-rheed website.
2. Move to sim-trhepd-rheed/src folder and make bulk.exe and surf.exe by using make.

Before running py2dmat, run bulk.exe to create the bulk data. The surf.exe is called from py2dmat.

7.2.2 Input parameters

Input parameters can be specified in subsections config, post, param, reference in solver section.

[solver] section

• generate_rocking_curve

Format: boolean (default: false)
Description: Whether to generate RockingCurve_calculated.txt. If true,
RockingCurve_calculated.txt will be generated in the working directory Log%%%_###. Note
that if remove_work_dir (in [post] subsection) is true, Log%%%_### will be removed.

[solver.config] subsection

• surface_exec_file

Format: string (default: “surf.exe”)
Description: Path to sim-trhepd-rheed surface reflection solver surf.exe.

• surface_input_file

Format: string (default: “surf.txt”)
Description: Input file for surface structure.

• bulk_output_file

Format: string (default: “bulkP.b”)
Description: Output file for bulk structure.

68 Chapter 7. Direct Problem Solver

https://en.wikipedia.org/wiki/Himmelblau%27s_function
https://github.com/sim-trhepd-rheed/sim-trhepd-rheed
https://github.com/sim-trhepd-rheed/sim-trhepd-rheed

2DMAT's Documentation, Release 2.2.0

• surface_output_file

Format: string (default: “surf-bulkP.s”)
Description: Output file for surface structure.

• calculated_first_line

Format: integer (default: 5)
Description: In the output file, the first line to be read as D(x). The last line is automatically calculated from the
number of the reference data.

• calculated_info_line

Format: integer (default: 2)
Description: In the output file, the line contains the information of the calculated data – the number of glancing
angles (second column) and the number of beams (third column).

• cal_number

Format: Integer or List of integers
Description: In the output file, the columns to be read as D(x). Multiple columns can be specified (many-beam
condition).

[solver.post] subsection

This subsection is used to the postprocess – to specify how to calculate the objective function, that is, the deviation between
the experimental and computational data, and to draw the rocking curve.

• Rfactor_type

Format: string (“A” or “B”, default: “A”)
Description: This parameter specifies how to calculate the R-factor to be minimized. Let n be the number of
dataset, m be the number of glancing angles, and v(n) = (v

(n)
1 , v

(n)
2 , . . . , v

(n)
m) be the calculated data. With the

weights of the beams, w(j), R-factors is defined as follows:
– “A” type:

R =

√√√√ n∑
j

w(j)

m∑
i

(
u
(j)
i − v

(j)
i

)2

– “A2” type:

R2 =

n∑
j

w(j)
m∑
i

(
u
(j)
i − v

(j)
i

)2

– “B” type:

R =

∑m
i

(
u
(1)
i − v

(1)
i

)2
∑m

i

(
u
(1)
i

)2
+
∑m

i (v
(1)
i)2

∗ “B” type is available only for the single dataset (n = 1).

7.2. sim-trhepd-rheed solver 69

2DMAT's Documentation, Release 2.2.0

• normalization

Format: string (“TOTAL” or “MANY_BEAM”)
Description: This parameter specifies how to normalize the experimental and computational data vectors.

– “TOTAL”
∗ To normalize the data as the summation is 1.
∗ The number of dataset should be one (the number of cal_number should be one).

– “MANY_BEAM”
∗ To normalize with weights as specified by weight_type.

NOTE: “MAX” is no longer available
• weight_type

Format: string or None. “calc” or “manual” (default: None)
Description: The weights of the datasets for the “MANY_BEAM” normalization.
– “calc”

w(n) =

(∑m
i v

(n)
i∑n

j

∑m
i v

(j)
i

)2

– “manual”
w(n) is specified by spot_weight.

• spot_weight

Format: list of float (mandatory when weight_type is “manual”)
Description: The weights of the beams in the calculation of R-factor. The weights are automatically normalized as
the sum be 1. For example, [3,2,1] means w(1) = 1/2, w(2) = 1/3, w(3) = 1/6.

• omega

Format: float (default: 0.5)
Description: This parameter specifies the half-width of convolution.

• remove_work_dir

Format: boolean (default: false)
Description: Whether to remove working directories Log%%%_### after reading R-factor or not

[solver.param] subsection

• string_list

Format: list of string. The length should match the value of dimension (default: [“value_01”, “value_02”]).
Description: List of placeholders to be used in the reference template file to create the input file for the solver.
These strings will be replaced with the values of the parameters being searched for.

70 Chapter 7. Direct Problem Solver

2DMAT's Documentation, Release 2.2.0

[solver.reference] subsection

• path

Format: string (default: experiment.txt)
Description: Path to the reference data file.

• reference_first_line

Format: integer
Description: In the reference data file, the first line to be read as Dexp. The default value is 1, that is, the first line
of the file.

• reference_last_line

Format: integer
Description: In the reference data file, the last line to be read as Dexp. If omitted, all lines from the first line to the
end of the file will be read.

• exp_number

Format: Integer or List of integers
Description: In the reference data file, the column numbers to be read. Multiple columns can be specified (many-
beam condition).

7.2.3 Reference file

Input template file

The input template file template.txt is a template for creating an input file for surf.exe. The parameters to be
moved in py2dmat (such as the atomic coordinates you want to find) should be replaced with the appropriate string,
such as value_*. The strings to be used are specified by string_list in the [solver] - [param] section of
the input file for the solver. An example template is shown below.

2 ,NELMS, -------- Ge(001)-c4x2
32,1.0,0.1 ,Ge Z,da1,sap
0.6,0.6,0.6 ,BH(I),BK(I),BZ(I)
32,1.0,0.1 ,Ge Z,da1,sap
0.4,0.4,0.4 ,BH(I),BK(I),BZ(I)
9,4,0,0,2, 2.0,-0.5,0.5 ,NSGS,msa,msb,nsa,nsb,dthick,DXS,DYS
8 ,NATM
1, 1.0, 1.34502591 1 value_01 ,IELM(I),ocr(I),X(I),Y(I),Z(I)
1, 1.0, 0.752457792 1 value_02
2, 1.0, 1.480003343 1.465005851 value_03
2, 1.0, 2 1.497500418 2.281675
2, 1.0, 1 1.5 1.991675
2, 1.0, 0 1 0.847225
2, 1.0, 2 1 0.807225
2, 1.0, 1.009998328 1 0.597225
1,1 ,(WDOM,I=1,NDOM)

In this case, value_01, value_02, and value_03 are the parameters to be moved in py2dmat.

7.2. sim-trhepd-rheed solver 71

2DMAT's Documentation, Release 2.2.0

Target file

This file (experiment.txt) contains the data to be targeted. The first column contains the angle, and the second and
following columns contain the calculated value of the reflection intensity multiplied by the weight. An example of the file
is shown below.

3.00000e-01 8.17149e-03 1.03057e-05 8.88164e-15 ...
4.00000e-01 1.13871e-02 4.01611e-05 2.23952e-13 ...
5.00000e-01 1.44044e-02 1.29668e-04 4.53633e-12 ...
6.00000e-01 1.68659e-02 3.49471e-04 7.38656e-11 ...
7.00000e-01 1.85375e-02 7.93037e-04 9.67719e-10 ...
8.00000e-01 1.93113e-02 1.52987e-03 1.02117e-08 ...
9.00000e-01 1.92590e-02 2.53448e-03 8.69136e-08 ...
1.00000e+00 1.86780e-02 3.64176e-03 5.97661e-07 ...
1.10000e+00 1.80255e-02 4.57932e-03 3.32760e-06 ...
1.20000e+00 1.77339e-02 5.07634e-03 1.50410e-05 ...
1.30000e+00 1.80264e-02 4.99008e-03 5.53791e-05 ...
...

7.2.4 Output file

For sim-trhepd-rheed, the files output by surf.exe will be output in the Log%%%%%_##### folder under the
folder with the rank number. %%%%% means an index of iteration in Algorithm (e.g., steps in Monte Carlo), and
means an index of group (e.g., replica index in Monte Carlo). In large calculation, the number of these folders
becomes too large to be written in the storage of the system. For such a case, let solver.post.remove_work_dir
parameter be true in order to remove these folders. This section describes the own files that are output by this solver.

stdout

It contains the standard output of surf.exe. An example is shown below.

bulk-filename (end=e) ? :
bulkP.b
structure-filename (end=e) ? :
surf.txt
output-filename :
surf-bulkP.s

RockingCurve_calculated.txt

This file is located in the Log%%%%%_##### folder. At the beginning of the file, the lines beginning with # are head-
ers. The header contains the values of the input variables, the objective function value f(x), the parameters Rfac-
tor_type, normalization, weight_type, cal_number, spot_weight, and what is marked in the data
portion columns (e.g. # #0 glancing_angle).
The header is followed by the data. The first column shows the glancing angle, and the second and subsequent columns
show the intensity of each data column. You can see which data columns are marked in the header. For example,

#0 glancing_angle
#1 cal_number=1
#2 cal_number=2
#3 cal_number=4

72 Chapter 7. Direct Problem Solver

2DMAT's Documentation, Release 2.2.0

shows that the first column is the glancing angle, and the second, third, and fourth columns are the calculated data corre-
sponding to the first, second, and fourth columns of the calculated data file, respectively.
Intencities in each column are normalized so that the sum of the intensity is 1. To calculate the objective function value (R-
factor and R-factor squared), the data columns are weighted by spot_weight and normalized by normalization.

#value_01 = 0.00000 value_02 = 0.00000
#Rfactor_type = A
#normalization = MANY_BEAM
#weight_type = manual
#fx(x) = 0.03686180462340505
#cal_number = [1, 2, 4, 6, 8]
#spot_weight = [0.933 0.026 0.036 0.003 0.002]
#NOTICE : Intensities are NOT multiplied by spot_weight.
#The intensity I_(spot) for each spot is normalized as in the following equation.
#sum(I_(spot)) = 1
#
#0 glancing_angle
#1 cal_number=1
#2 cal_number=2
#3 cal_number=4
#4 cal_number=6
#5 cal_number=8
0.30000 1.278160358686800e-02 1.378767858296659e-04 8.396046839668212e-14 1.
↪→342648818357391e-30 6.697979700048016e-53
0.40000 1.778953628930054e-02 5.281839702773564e-04 2.108814173486245e-12 2.
↪→467220122612354e-28 7.252675318478533e-50
0.50000 2.247181148723425e-02 1.671115124520428e-03 4.250758278908295e-11 3.
↪→632860054842994e-26 6.291667506376419e-47
...

7.3 sxrd solver

sxrd is a Solver that uses sxrdcalc to calculate the Rocking curve by giving atomic positions x , atomic occupan-
cies, and Debye-Waller factor and finally returnes the error f(x) from the experimental Rocking curve.

7.3.1 Preparation

The sxrdcalc is called from py2dmat. You will need to install sxrdcalc beforehand. sxrdcalc is available on
GitHub at the following URL:
https://github.com/sxrdcalc/sxrdcalc
Access the site and download the source code from “Code” - “Download zip”. After unzipping the zip file, edit the
Makefile to fit your computing environment, and then type make to create the sxrdcalc executable.
It is noted that the bulk data must be prepared in advance before running py2dmat (see the auxiliary file for solvers
below for the format).

7.3. sxrd solver 73

https://github.com/sxrdcalc/sxrdcalc

2DMAT's Documentation, Release 2.2.0

7.3.2 Input parameters

Input parameters are specified in subsections in the solver section (config, post, param, and reference).

[config] section

• sxrd_exec_file

Format: string
Description: Path to the solver sxrdcalc.

• bulk_struc_in_file

Format: string
Description: Input file name of the bulk structure.
An example of the input input is given as follows:

[config]
sxrd_exec_file = "../../sxrdcalc"
bulk_struc_in_file = "sic111-r3xr3.blk"

[param] section

• scale_factor

Format: float (default: 1.0)
Description: The value of the target Rocking Curve and the scale of the Rocking Curve obtained from the simu-
lation.

• opt_scale_factor

Format: bool (default: false)
Description: Flag whether scale_factor should be optimized or not.

• type_vector

Format: list
Description: A list of positive numbers which specifies the type of variables to be optimized. This list corresponds
to the types specified in the [param.atom] subsection. If the type is the same, they are treated as the same
variable.

[param.domain] subsection

In this section, parameters to create domains are specified. You will need to define the domains you want to create. In
the [param.domain.atom] sub-subsection, paramters of the information in the domain are specified.

• domain_occupancy

Format: float
Description: Occupancy of the whole domain.

74 Chapter 7. Direct Problem Solver

2DMAT's Documentation, Release 2.2.0

[param.domain.atom] subsection

This section needs to be defined as many times as the number of atoms you want to optimize belonging to the domain.
Note that the type, which represents the type of variable, must be a positive number.

• name

Format: string (can be duplicated)
Description: The name of the atom to be optimized.

• pos_center

Format: list
Description: Center coordinates of the atom. Describe in format of [x0, y0, z0](x0, y0, z0 2/7float).

• DWfactor

Format: float
Description: Debye-Waller factor (in the unit of Å2).

• occupancy

Format: float (default: 1.0)
Description: Atom occupancy.

• displace_vector (can be omitted)
Format: list of lists
Description: A vector that defines the direction in which the atoms are moved. A maximum of three directions
can be specified. Define displacement vectors and initial values in each list as [type, Di1, Di2, Di3](type is int,
Di1, Di2, Di3 is float type). Follwing the specified information, ltype is varied as dri = (Di1a⃗+Di2⃗b+Di3c⃗)∗ltype
(a⃗, b⃗, c⃗ is a unit lattice vector defined in bulk_struc_in_file or struc_in_file).

• opt_DW (can be omitted)
Format: list
Description: Sets the scale at which the Debye-Waller coefficient is varied. It is defined as [type, scale].

• opt_occupancy

Format: int
Description: If defined, the occupancy changes. The specified variable represents the type.

An example of an input file is given as follows:

[param]
scale_factor = 1.0
type_vector = [1, 2]

[[param.domain]]
domain_occupancy = 1.0
[[param.domain.atom]]
name = "Si"
pos_center = [0.00000000, 0.00000000, 1.00000000]
DWfactor = 0.0
occupancy = 1.0
displace_vector = [[1, 0.0, 0.0, 1.0]]

[[param.domain.atom]]

(continues on next page)

7.3. sxrd solver 75

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
name = "Si"
pos_center = [0.33333333, 0.66666667, 1.00000000]
DWfactor = 0.0
occupancy = 1.0
displace_vector = [[1, 0.0, 0.0, 1.0]]

[[param.domain.atom]]
name = "Si"
pos_center = [0.66666667, 0.33333333, 1.00000000]
DWfactor = 0.0
occupancy = 1.0
displace_vector = [[1, 0.0, 0.0, 1.0]]

[[param.domain.atom]]
name = "Si"
pos_center = [0.33333333, 0.33333333, 1.00000000]
DWfactor = 0.0
occupancy = 1.0
displace_vector = [[2, 0.0, 0.0, 1.0]]

[reference] section

• f_in_file

Format: string
Description: Path to the input file for the target locking curve.

7.3.3 Reference file for Solver

Target reference file

The file containing the data to be targeted to fit. The path is specified by f_in_file in the [reference] section. For
each line, h k l F sigma is written. Here, h, k, l are the wavenumbers, F is the intensity, and sigma is the
uncertainty of F. An example file is shown below.

0.000000 0.000000 0.050000 572.805262 0.1
0.000000 0.000000 0.150000 190.712559 0.1
0.000000 0.000000 0.250000 114.163340 0.1
0.000000 0.000000 0.350000 81.267319 0.1
0.000000 0.000000 0.450000 62.927325 0.1
...

Bulk structure file

The file containing the bulk structure data. The path is specified by bulk_struc_in_file in the [config] section.
The first line is a comment, the second line is a b c alpha beta gamma. Here, a , b, and c are the lattice
constants of the unit cells, and alpha, beta , and gamma are their angles. The third and subsequent lines specify the
atomsymbol r1 r2 r3 DWfactor occupancy. Here, atomsymbol is the atom species, r1, r2, and r3 are
the position coordinates of the atom, DWfactor is the Debye-Waller factor, and occupancy is the occupancy rate.
An example file is given below.

76 Chapter 7. Direct Problem Solver

2DMAT's Documentation, Release 2.2.0

SiC(111) bulk
5.33940 5.33940 7.5510487 90.000000 90.000000 120.000000
Si 0.00000000 0.00000000 0.00000000 0.0 1.0
Si 0.33333333 0.66666667 0.00000000 0.0 1.0
Si 0.66666667 0.33333333 0.00000000 0.0 1.0
C 0.00000000 0.00000000 0.25000000 0.0 1.0
...

7.3.4 Output files

In sxrd, the output files are stored in the folder with the rank number. Here is a description of the files that are output
by py2dmat.

stdout

The standard output by sxrd is described. For sxrd’s Least square fitting, we give variables as initial parameters and
calculate the Rfactor for a 1-shot calculation (number of iterations = 0). The Rfactor is written in R under Fit results.
Here is an example of the output.

Program py2dmat/mapper_sxrd/sxrdcalc for surface x-ray diffraction calculations.
Version 3.3.3 - August 2019

Inputfile: lsfit.in
Least-squares fit of model to experimental structure factors.

...

Fit results:
Fit not converged after 0 iterations.
Consider increasing the maximum number of iterations or find better starting values.
chi^2 = 10493110.323318, chi^2 / (degree of freedom) = 223257.666454 (Intensities)
chi^2 = 3707027.897897, chi^2 / (degree of freedom) = 78872.933998 (Structure factors)
R = 0.378801

Scale factor: 1.00000000000000 +/- 0.000196
Parameter Nr. 1: 3.500000 +/- 299467640982.406067
Parameter Nr. 2: 3.500000 +/- 898402922947.218384

Covariance matrix:
0 1 2

0 0.0000000383 20107160.3315223120 -60321480.9945669472
1 20107160.3315223120 89680867995567253356544.0000000000 -269042603986701827178496.
↪→0000000000
2 -60321480.9945669472 -269042603986701827178496.0000000000␣
↪→807127811960105615753216.0000000000

7.3. sxrd solver 77

2DMAT's Documentation, Release 2.2.0

7.4 leed solver

leed is a Solver made by M.A. Van Hove, which calculates the Rocking curve from atomic positions etc., using
SATLEED, and returns the error from the experimental Rocking curve as f(x). For more information on SATLEED, see
[SATLEED].

7.4.1 Preparation

First, install SATLEED . Access to the following URL http://www.icts.hkbu.edu.hk/VanHove_files/leed/leedsatl.zip and
download a zip file. Depending on the details of the system you want to calculate, it is necessary to change the parameters
in the source code for SATLEED. After changing parameters, compile programs to generate the executable files such as
stal1.exe, satl2.exe .
For trying the example at sample/py2dmat/leed, a utility script file setup.sh for downloading SATLEED,
rewriting source codes, and compiling the program is available.:

$ cd sample/py2dmat/leed
$ sh ./setup.sh

After running setup.sh, executable files satl1.exe and satl2.exe are generated in leedsatl directory.
Note that it is assumed that you have already executed satl1.exe before using py2dmat . Therefore, the following
files must be generated.

• Input files of satl1.exe : exp.d, rfac.d, tleed4.i, tleed5.i
• Output files of satl1.exe : tleed.o , short.t

py2dmat will run satl2.exe based on the above files.

7.4.2 Input parameters

Input parameters are specified in subsections in the solver section (config and reference).

[config] section

• path_to_solver

Format: string
Description: Path to the solver satl2.exe .

[reference] section

• path_to_base_dir

Format: string
Description: Path to the directory which stores exp.d, rfac.d, tleed4.i, tleed5.i , tleed.o ,
short.t .

78 Chapter 7. Direct Problem Solver

http://www.icts.hkbu.edu.hk/VanHove_files/leed/leedsatl.zip

2DMAT's Documentation, Release 2.2.0

7.4.3 Reference file for Solver

Target reference file

The file containing the data to be targeted to fit. Edit tleed4.i in path_to_base_dir in the [reference]
section. Add the number you want to optimize to optxxx (where xxx is a three-digit number in the format 000, 001,
002, …). (where xxx is a three-digit integer in the form 000, 001, 002, …). Note that the number of xxx must match the
order and number of variables in the list of py2dmat variables to be optimized. Note that if IFLAG and LSFLAG are
not set to 0, the satleed side is also optimized.
An example file is shown below.

1 0 0 IPR ISTART LRFLAG
1 10 0.02 0.2 NSYM NSYMS ASTEP VSTEP
5 1 2 2 NT0 NSET LSMAX LLCUT
5 NINSET
1.0000 0.0000 1 PQEX
1.0000 2.0000 2 PQEX
1.0000 1.0000 3 PQEX
2.0000 2.0000 4 PQEX
2.0000 0.0000 5 PQEX
3 NDIM
opt000 0.0000 0.0000 0 DISP(1,j) j=1,3
0.0000 opt001 0.0000 0 DISP(2,j) j=1,3
0.0000 0.0000 0.0000 1 DISP(3,j) j=1,3
0.0000 0.0000 0.0000 0 DISP(4,j) j=1,3
0.0000 0 DVOPT LSFLAG
3 0 0 MFLAG NGRID NIV
...

7.4.4 Output file

In leed, the output files are stored in the folder with the rank number.

7.4. leed solver 79

2DMAT's Documentation, Release 2.2.0

80 Chapter 7. Direct Problem Solver

CHAPTER

EIGHT

RELATED TOOLS

8.1 py2dmat_neighborlist

This tool generates a neighborhood-list file from the mesh file.
When you install py2dmat via pip command, py2dmat_neighborlist is also installed under the bin. A python
script src/py2dmat_neighborlist.py is also available.

8.1.1 Usage

Pass a path to the mesh file as an argument. The filename of the generated neighborhood-list file is specified by -o option.

$ py2dmat_neighborlist -o neighborlist.txt MeshData.txt

Or

$ python3 src/py2dmat_neighborlist.py -o MeshData.txt

The following command-line options are available.
• -o output or --output output

– The filename of output (default: neighborlist.txt)
• -u "unit1 unit2..." or --unit "unit1 unit2..."

– Length scale for each dimension of coordinate (default: 1.0 for all dims)
∗ Put values splitted by whitespaces and quote the whole

· e.g.) -u "1.0 0.5"

– Each dimension of coordinate is divided by the corresponding unit.
• -r radius or --radius radius

– A pair of nodes where the Euclidean distance is less than radius is considered a neighborhood (default:
1.0)

– Distances are calculated in the space after coordinates are divided by -u
• -q or --quiet

– Do not show a progress bar
– Showing a progress bar requires tqdm python package

• --allow-selfloop

81

2DMAT's Documentation, Release 2.2.0

– Include i in the neighborhoods of i itself
• --check-allpairs

– Calculate distances of all pairs
– This is for debug

MPI parallelization is available.

8.2 tool/to_dft/to_dft.py

This tool generates input data for Quantum Espresso (QE) , a first-principles electronic structure calculation software,
from the atomic structures of (001) and (111) surface models of systems with Si isotetrahedral bond networks. This
is used to validate the obtained structure and to obtain microscopic information such as the electronic state. In order to
eliminate the influence of dangling bond-derived electrons from the opposite surface of interest, we use a technique called
hydrogen termination, in which a hydrogen atom is placed at the position of the lowest dangling bond.

8.2.1 Prerequisites

• Python3 >= 3.6
The following packages are required:

• Atomic Simulation Environment(ASE) (>= 3.21.1)
• Numpy
• Scipy
• Matplotlib

8.2.2 Overview of this tool

The input file including the information such as the name of the structure file (XYZ format) and the lattice vector infor-
mation to represent the two-dimensional periodic structure is read in, and the coordinates of the lowest layer and the next
layer of atoms are extracted from the obtained coordinate data. The bottom layer atoms are removed, and H atoms are
placed at the corresponding positions to create a model with the distance to the next layer atoms adjusted to a tetrahedral
structure (for example, the distance to a silane molecule in the case of Si). The hydrogen-terminated model is saved in
XYZ format, and a cif file and an input file for Quantum Espresso (QE) are also created. If you have QE installed, you
can also run the calculation as is.

8.2.3 Tutorial

1. Prepare an XYZ file for reference.
In the following, we will use the file surf_bulk_new111.xyz in the folder tool/todft/sample/111. The
contents of the file are as follows.

12
surf.txt / bulk.txt
Si 1.219476 0.000000 4.264930
Si 6.459844 0.000000 4.987850
Si 1.800417 1.919830 3.404650

(continues on next page)

82 Chapter 8. Related Tools

https://www.quantum-espresso.org/
https://wiki.fysik.dtu.dk/ase

2DMAT's Documentation, Release 2.2.0

(continued from previous page)
Si 5.878903 1.919830 3.404650
Si 3.839660 1.919830 2.155740
Si 0.000000 1.919830 1.900440
Si 3.839660 0.000000 0.743910
Si 0.000000 0.000000 0.597210
Si 1.919830 0.000000 -0.678750
Si 5.759490 0.000000 -0.678750
Si 1.919830 1.919830 -2.036250
Si 5.759490 1.919830 -2.036250

2. Next, create an input file for setting the various parameters.
The file format of the input file istoml. The following section describes the contents of the input file usinginput.toml
in the tool/todft/sample/111 folder. The contents of the file are as follows.

[Main]
input_xyz_file = "surf_bulk_new111.xyz"
output_file_head = "surf_bulk_new111_ext"
[Main.param]
z_margin = 0.001
slab_margin = 10.0
r_SiH = 1.48 #angstrom
theta = 109.5 #H-Si-H angle in degree
[Main.lattice]
unit_vec = [[7.67932, 0.00000, 0.00000], [0.00000, 3.83966, 0.00000]]
[ASE]
solver_name = "qe"
kpts = [3,3,1] # sampling k points (Monkhorst-Pack grid)
command = "mpirun -np 4 ./pw.x -in espresso.pwi > espresso.pwo"
[Solver]
[Solver.control]
calculation='bands' # 'scf','realx','bands',...
pseudo_dir='./' # Pseudopotential directory
[Solver.system]
ecutwfc = 20.0 # Cut-off energy in Ry
nbands=33 # # of bands (only used in band structure calc
[Solver.pseudo]
Si = 'Si.pbe-mt_fhi.UPF'
H = 'H.pbe-mt_fhi.UPF'

The input file consists of three sections: Main, ASE, and Solver. Below is a brief description of the variables for each
section.

Main section

This section contains settings related to the parameters required for hydrogen termination.
• input_xyz_file

Format: string
Description: Name of the xyz file to input

• output_file_head

Format: string
Description: Header for output files (xyz and cif files)

8.2. tool/to_dft/to_dft.py 83

2DMAT's Documentation, Release 2.2.0

Main.Param section

• z_margin

Format: float
Description: Margin used to extract the lowest and second-to-last atoms. For example, if the z-coordinate of the
atom in the bottom layer is z_min, the atoms in z_min - z_margin <= z <= z_min + z_margin
will be extracted.

• slab_margin

Format: float
Description: Margin for tuning the size of the slab. If the z-coordinates of the atoms in the bottom and top layers
are z_min , z_max, then the slab size is given by z_max-z_min+slab_margin.

• r_SiH

Format: float
Description: The distance (in 2/7A) between a vertex (e.g. Si) and H of a tetrahedral structure.

• theta

Format: float
Description: The angle between the vertex and H of the tetrahedral structure (e.g. Si-H-Si).

Main.lattice section

• unit_vec

Format: list
Description: Specify a unit vector that forms a 2D plane (ex. unit_vec = [[7.67932, 0.00000,
0.00000], [0.00000, 3.83966, 0.00000]]).

ASE section

This section specifies parameters related to ASE.
• solver_name

Format: string
Description: The name of the solver. Currently, only qe is given.

• kpts

Format: list
Description: Specify the k-points to be sampled (Monkhorst-Pack grid).

• command

Format: string
Description: Set the command used to run the solver.

84 Chapter 8. Related Tools

2DMAT's Documentation, Release 2.2.0

Solver section

In this section, parameters related to Solver are specified. You will need to specify this if you want to perform first-
principles calculations directly using ASE. Basically, the configuration is the same as the one specified in the input file of
each solver. For example, in the case of QE, Solver.control contains the parameters to be set in the control
section of QE.

3. Execute the following command.

python3 to_dft.py input.toml

After finishing calculations, the following files are generated:
• surf_bulk_new111_ext.xyz

• surf_bulk_new111_ext.cif

• espresso.pwi

If the path to the QE and pseudopotential is set in the input file, the first-principle calculation will be performed
as is. If not, the ab initio calculation will not be performed and you will get the message Calculation of
get_potential_energy is not normally finished. at the end, but the above file will still be out-
put.
The following is a description of the output file.

• surf_bulk_new111_ext.xyz

The output is the result of the replacement of the lowest level atom with H and the addition of H to form a tetrahedral
structure. The actual output is as follows.

14
Lattice="7.67932 0.0 0.0 0.0 3.83966 0.0 0.0 0.0 17.0241"␣
↪→Properties=species:S:1:pos:R:3 pbc="T T T"
Si 1.219476 0.000000 4.264930
Si 6.459844 0.000000 4.987850
Si 1.800417 1.919830 3.404650
Si 5.878903 1.919830 3.404650
Si 3.839660 1.919830 2.155740
Si 0.000000 1.919830 1.900440
Si 3.839660 0.000000 0.743910
Si 0.000000 0.000000 0.597210
Si 1.919830 0.000000 -0.678750
Si 5.759490 0.000000 -0.678750
H 1.919830 -1.208630 -1.532925
H 1.919830 1.208630 -1.532925
H 5.759490 -1.208630 -1.532925
H 5.759490 1.208630 -1.532925

This file can be read by appropriate visualization software as ordinary XYZFormat coordinate data, but the lattice vector
information of the periodic structure is written in the place where comments are usually written. You can also copy the
data of “element name + 3D coordinate” from the third line of the output file to the input file of QE.
espresso.pwi is the input file for QE’s scf calculation, and structural optimization and band calculation can be done
by modifying this file accordingly. For details, please refer to the QE online manual .

8.2. tool/to_dft/to_dft.py 85

https://www.quantum-espresso.org/Doc/INPUT_PW.html

2DMAT's Documentation, Release 2.2.0

86 Chapter 8. Related Tools

CHAPTER

NINE

(FOR DEVELOPERS) USER-DEFINED ALGORITHM AND SOLVER

py2dmat solves the reverse problem by combination of Solver for the direct problem and Algorithm for the
optimization problem. Instead of some Solver and Algorithm which are served by py2dmat, users can define and
use their own components. In this chapter, how to define Solver and Algorithm and to use them will be described.

9.1 Commons

9.1.1 py2dmat.Info

This class treats the input parameters. This has the following four instance variables.
• base : dict[str, Any]

– Parameters for whole program such as the directory where the output will be written.
• solver : dict[str, Any]

– Parameters for Solver
• algorithm : dict[str, Any]

– Parameters for Algorithm
• runner : dict[str, Any]

– Parameters for Runner
An instance of Info is initialized by passing a dict which has the following four sub dictionaries, base, solver,
algorithm, and "runner". Each value will be set to the corresponding field of Info.

• About base
– Root directory root_dir

∗ The default value is "." (the current directory).
∗ Value of root_dir will be converted to an absolute path.
∗ The leading ~ will be expanded to the user’s home directory.
∗ Specifically, the following code is executed

p = pathlib.Path(base.get("root_dir", "."))
base["root_dir"] = p.expanduser().absolute()

– Output directory output_dir
∗ The default value is ".", that is, the same to root_dir

87

2DMAT's Documentation, Release 2.2.0

∗ The leading ~ will be expanded to the user’s home directory.
∗ If a relative path is given, its origin is root_dir.
∗ Specifically, the following code is executed

p = pathlib.Path(base.get("work_dir", "."))
p = p.expanduser()
base["work_dir"] = base["root_dir"] / p

9.1.2 py2dmat.Message

When Algorithm tries to invoke Solver, an instance of this class is passed from Algorithm to Solver via
Runner.
This has the following three instance variables.

• x: np.ndarray

– Coordinates of a point x to calculate f(x)
• step: int

– The index of parameters
– For example, the index of steps in exchange and the ID of parameter in mapper.

• set: int

– Which lap it is
– For example, min_search has two laps, the first one is optimization and the second one is recalculation
the optimal values for each step.

9.1.3 py2dmat.Runner

Runner connects Algorithm and Solver. The constructor of Runner takes solver: Solver, info:
Info, and mapping: Callable[[np.ndarray], np.ndarray].
submit(self, message: py2dmat.Message) -> floatmethod invokes the solver and returns the result.
To evaluate fx = f(x), use the following code snippet:

message = py2dmat.Message(x, step, set)
fx = runner.submit(message)

submit internally uses mapping for generating a parameter used in Solver, y, from a parameter searched by Al-
gorithm, x, as y = mapping(x). When mapping is omitted in the constructor (or None is passed), an affine
mapping (py2dmat.util.mapping.Affine(A,b)) y = Ax + b is used as mapping. The elements of A and
b are defined in info. See Input file for details how/which components of info Runner uses.

88 Chapter 9. (For developers) User-defined algorithm and solver

2DMAT's Documentation, Release 2.2.0

9.2 Solver

Solver is defined as a subclass of py2dmat.solver.SolverBase

import py2dmat

class Solver(py2dmat.solver.SolverBase):
...

The following methods should be defined.
• __init__(self, info: py2dmat.Info)

– It is required to call the constructor of the base class.
∗ super().__init__(info)

– The constructor of SolverBase defines the following instance variables.
∗ self.root_dir: pathlib.Path : Root directory

· use info.base["root_dir"]
∗ self.output_dir: pathlib.Path : Output directory

· use info.base["output_dir"]
∗ self.proc_dir: pathlib.Path : Working directory for each MPI process

· as self.output_dir / str(mpirank)

∗ self.work_dir: pathlib.Path : Directory where the solver is invoked
· same to self.proc_dir

– Read the input parameter info and save as instance variables.
• prepare(self, message: py2dmat.Message) -> None

– This is called before the solver starts
– message includes an input parameter x, convert it to something to be used by the solver

∗ e.g., to generate an input file of the solver
• run(self, nprocs: int = 1, nthreads: int = 1) -> None

– Run the solver
– Result should be saved to somewhere in order to be read by get_results later

∗ e.g., save f(x) as an instance variable
• get_results(self) -> float

– This is called after the solver finishes
– Returns the result of the solver

∗ e.g., to retrieve the result from the output file of the solver

9.2. Solver 89

2DMAT's Documentation, Release 2.2.0

9.3 Algorithm

Algorithm is defined as a subclass of py2dmat.algorithm.AlgorithmBase

import py2dmat

class Algorithm(py2dmat.algorithm.AlgorithmBase):
...

9.3.1 AlgorithmBase

AlgorithmBase class offers the following methods

- ``__init__(self, info: py2dmat.Info, runner: py2dmat.Runner = None)``

• Reads the common parameters from info and sets the following instance variables:
– self.mpicomm: Optional[MPI.Comm] : MPI.COMM_WORLD

∗ When import mpi4py fails, this will be None.
– self.mpisize: int : the number of MPI processes

∗ When import mpi4py fails, this will be 1.
– self.mpirank: int : the rank of this process

∗ When import mpi4py fails, this will be 0.
– self.rng: np.random.Generator : pseudo random number generator

∗ For details of the seed, please see the [algorithm] section of the input parameter
– self.dimension: int : the dimension of the parameter space
– self.label_list: List[str] : the name of each axes of the parameter space
– self.root_dir: pathlib.Path : root directory

∗ info.base["root_dir"]

– self.output_dir: pathlib.Path : output directory
∗ info.base["root_dir"]

– self.proc_dir: pathlib.Path : working directory of each process
∗ self.output_dir / str(self.mpirank)

∗ Directory will be made automatically
∗ Each process performs an optimization algorithm in this directory

– self.timer: dict[str, dict] : dictionary storing elapsed time
∗ Three empty dictinaries, "prepare", "run", and "post" will be defined

• prepare(self) -> None

– Prepares the algorithm
– It should be called before self.run() is called
– It calls self._prepare()

90 Chapter 9. (For developers) User-defined algorithm and solver

2DMAT's Documentation, Release 2.2.0

• run(self) -> None

– Performs the algorithm
– Enters into self.proc_dir, calls self._run(), and returns to the original directory.

• post(self) -> None

– Runs a post process of the algorithm, for example, write the result into files
– It should be called after self.run() is called
– Enters into self.output_dir, calls self._post(), and returns to the original directory.

• main(self) -> None

– Calls prepare, run, and post
– Measures the elapsed times for calling each function, and write them into file

• _read_param(self, info: py2dmat.Info) -> Tuple[np.ndarray, np.ndarray, np.
ndarray, np.ndarray]

– Helper method for initializing defining the continuous parameter space
– Reads info.algorithm["param"] and returns the followings:

∗ Initial value
∗ Lower bound
∗ Upper bound
∗ Unit

– For details, see [algorithm.param] subsection for minsearch
• _meshgrid(self, info: py2dmat.Info, split: bool = False) -> Tuple[np.
ndarray, np.ndarray]

– Helper method for initializing defining the discrete parameter space
– Reads info.algorithm["param"] and returns the followings:

∗ N points in the D dimensinal space as a NxD matrix
∗ IDs of points as a N dimensional vector

– If split is True, the set of points is scatterred to MPI processes
– For details, see [algorithm.param] subsection for mapper

9.3.2 Algorithm

In Algorithm, the following methods should be defined:
• __init__(self, info: py2dmat.Info, runner: py2dmat.Runner = None)

– Please transfer the arguments to the constructor of the base class:
∗ super().__init__(info=info, runner=runner)

– Reads info and sets information
• _prepare(self) -> None

– Pre process

9.3. Algorithm 91

2DMAT's Documentation, Release 2.2.0

• _run(self) -> None

– The algorithm itself
– In this method, you can calculate f(x) from a parameter x as the following:

message = py2dmat.Message(x, step, set)
fx = self.runner.submit(message)

• _post(self) -> None

– Post process

9.4 Usage

The following flow solves the optimization problem. The number of flow corresponds the comment in the program
example.

1. Define your Algorithm and/or Solver
• Of course, classes that py2dmat defines are available

2. Prepare the input parameter, info: py2dmat.Info

• Make a dictionary as your favorite way
– The below example uses a TOML formatted input file for generating a dictionary

3. Instantiate solver: Solver, runner: py2dmat.Runner, and algorithm: Algorithm

4. Invoke algorithm.main()
Example

import sys
import tomli
import py2dmat

(1)
class Solver(py2dmat.solver.SolverBase):

Define your solver
...

class Algorithm(py2dmat.algorithm.AlgorithmBase):
Define your algorithm
...

(2)
with open(sys.argv[1]) as f:

inp = tomli.load(f)
info = py2dmat.Info(inp)

(3)
solver = Solver(info)
runner = py2dmat.Runner(solver, info)
algorithm = Algorithm(info, runner)

(4)
algorithm.main()

92 Chapter 9. (For developers) User-defined algorithm and solver

CHAPTER

TEN

ACKNOWLEDGEMENTS

The development of 2DMATwas supported by JSPSKAKENHIGrant Number 19H04125 “Unification of computational
statistics and measurement technology by massively parallel machine” and “Project for advancement of software usability
in materials science” of The Institute for Solid State Physics, The University of Tokyo. A part of the design of and naming
in software is inspired by abics For the implementation of the forward problem solver, we thank to T. Hanada (Tohoku
Univ.), I. Mochizuki (KEK), W. Voegeli (Tokyo Gakugei Univ.), T. Shirasawa(AIST), R. Ahmed (Kyushu Univ.), and
K. Wada(KEK). For adding a tutorial for customizing solver, we thank to K. Tsukamoto (ISSP).

93

https://github.com/issp-center-dev/abics

2DMAT's Documentation, Release 2.2.0

94 Chapter 10. Acknowledgements

CHAPTER

ELEVEN

CONTACT

• Bug Reports
Please report all problems and bugs on the github Issues page.
To resolve bugs early, follow these guidelines when reporting:
1. Please specify the version of 2DMAT you are using.
2. If there are problems for installation, please inform us about your operating system and the compiler.
3. If a problem occurs during execution, enter the input file used for execution and its output.

Thank you for your cooperation.
• Others
If you have any questions about your research that are difficult to consult at Issues on GitHub, please send an e-mail
to the following address:
E-mail: 2dmat-dev__at__issp.u-tokyo.ac.jp (replace _at_ by @)

95

https://github.com/issp-center-dev/2DMAT/releases

2DMAT's Documentation, Release 2.2.0

96 Chapter 11. Contact

BIBLIOGRAPHY

[SATLEED] M.A. Van Hove, W. Moritz, H. Over, P.J. Rous, A. Wander, A. Barbieri, N. Materer, U. Starke, G.A.
Somorjai, Automated determination of complex surface structures by LEED, Surface Science Reports,
Volume 19, 191-229 (1993). https://doi.org/10.1016/0167-5729(93)90011-D

97

https://doi.org/10.1016/0167-5729(93)90011-D

	Introduction
	What is 2DMAT ?
	License
	Version Information
	Main developers

	Install of py2dmat
	Prerequisites
	How to download and install
	How to run
	How to uninstall

	Tutorials
	TRHEPD Direct Problem Solver
	Download and Install
	Calculation execution
	Visualization of calculation result

	Optimization by Nelder-Mead method
	Location of the sample files
	The reference file
	Input file
	Calculation execution
	Visualization of calculation results

	Grid search
	Location of the sample files
	Reference file
	Input file
	Calculation execution
	Visualization of calculation results

	Optimization by Bayesian Optimization
	Sample files
	Reference files
	Input files
	Calculation
	Visualization

	Optimization by replica exchange Monte Carlo
	Sample files
	Reference files
	Input files
	Calculation
	Post process
	Visualization

	Replica Exchange Monte Carlo search with limitation
	Sample files location
	Input files
	Calculation
	Visualization of the calculation result

	Optimization by population annealing
	Sample files
	Reference files
	Input files
	Calculation
	Visualization

	Addition of a direct problem solver
	Solver for benchmarking, analytical
	Addition of a direct problem solver

	Input file
	[base] section
	[solver] section
	[algorithm] section
	[runner] section
	[mapping] section
	[limitation] section
	[log] section

	Output files
	Common file
	time.log
	runner.log

	Search algorithms
	Nelder-Mead method minsearch
	Preparation
	Input parameters
	[param] section
	[minimize] section

	Output files
	SimplexData.txt
	res.txt

	Direct parallel search mapper
	Preparation
	Input parameters
	[param] section

	Refernce file
	Mesh definition file

	Output file
	ColorMap.txt

	Replica exchange Monte Carlo exchange
	Preparation
	Input parameters
	[algorithm.param]
	[algorithm.exchange]

	Reference file
	Mesh definition file
	Neighborhood-list file

	Output files
	RANK/trial.txt
	RANK/result.txt
	best_result.txt
	result_T#.txt
	Algorithm

	Markov chain Monte Carlo
	Replica exchange Monte Carlo

	Population Annealing Monte Carlo pamc
	Preparation
	Input parameters
	[algorithm.param]
	[algorithm.pamc]
	About the number of steps

	Reference file
	Mesh definition file
	Neighborhood-list file

	Output files
	RANK/trial_T#.txt
	RANK/trial.txt
	RANK/result_T#.txt
	RANK/result.txt
	best_result.txt
	fx.txt

	Algorithm
	Goal
	Annealed Importance Sampling (AIS) [1]
	population annealing (PA) [2]
	References

	Bayse optimization bayes
	Preparation
	Input parameters
	[algorithm.param] section
	[algorithm.bayes] section

	Reference file
	Mesh definition file

	Output files
	BayesData.txt

	Algorithm Description

	Direct Problem Solver
	analytical solver
	Input parameters

	sim-trhepd-rheed solver
	Preparation
	Input parameters
	[solver] section
	[solver.config] subsection
	[solver.post] subsection
	[solver.param] subsection
	[solver.reference] subsection

	Reference file
	Input template file
	Target file

	Output file
	stdout
	RockingCurve_calculated.txt

	sxrd solver
	Preparation
	Input parameters
	[config] section
	[param] section
	[param.domain] subsection
	[param.domain.atom] subsection

	[reference] section

	Reference file for Solver
	Target reference file
	Bulk structure file

	Output files
	stdout

	leed solver
	Preparation
	Input parameters
	[config] section
	[reference] section

	Reference file for Solver
	Target reference file

	Output file

	Related Tools
	py2dmat_neighborlist
	Usage

	tool/to_dft/to_dft.py
	Prerequisites
	Overview of this tool
	Tutorial
	Main section
	Main.Param section
	Main.lattice section
	ASE section
	Solver section

	(For developers) User-defined algorithm and solver
	Commons
	py2dmat.Info
	py2dmat.Message
	py2dmat.Runner

	Solver
	Algorithm
	AlgorithmBase
	Algorithm

	Usage

	Acknowledgements
	Contact
	Bibliography

