
2DMAT’s Documentation
Release 1.0

2DMAT’s developer team

Mar 12, 2021

CONTENTS:

1 Introduction 1
1.1 What is 2DMAT ? . 1
1.2 License . 1
1.3 Version Information . 2
1.4 Main developers . 2

2 Install of py2dmat 3
2.1 Prerequisites . 3
2.2 How to download and install . 3
2.3 How to run . 4
2.4 How to uninstall . 4

3 Input file 5
3.1 [base] section . 5
3.2 [solver] section . 5
3.3 [algorithm] section . 6
3.4 [runner] section . 6

4 Output files 9
4.1 Common file . 9

5 Direct Problem Solver 11
5.1 analytical solver . 11
5.2 sim-trhepd-rheed solver . 12

6 Search algorithms 17
6.1 Nelder-Mead method minsearch . 17
6.2 Direct parallel search mapper . 19
6.3 Bayse optimization bayes . 21
6.4 Replica exchange Monte Carlo exchange . 23

7 Tutorials 29
7.1 TRHEPD Direct Problem Solver . 29
7.2 Optimization by Nelder-Mead method . 33
7.3 Grid search . 37
7.4 Optimization by Bayesian Optimization . 42
7.5 Optimization by replica exchange Monte Carlo . 47

8 Related Tools 53
8.1 to_dft.py . 53

i

9 (For developers) User-defined algorithm and solver 59
9.1 Commons . 59
9.2 Solver . 60
9.3 Algorithm . 62
9.4 Usage . 64

10 Acknowledgements 65

11 Contact 67

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is 2DMAT ?

2DMAT is a framework for applying a search algorithm to a direct problem solver to find the optimal solution. As
the standard direct problem solver, the experimental data analysis software for two-dimensional material structure
analysis is prepared. The direct problem solver gives the deviation between the experimental data and the calculated
data obtained under the given parameters such as atomic positions as a loss function used in the inverse problem.
The optimal parameters are estimated by minimizing the loss function using a search algorithm. For further use, the
original direct problem solver or the search algorithm can be defined by users. In the current version, for solving
a direct problem, 2DMAT offers the wrapper of the solver for the total-reflection high-energy positron diffraction
(TRHEPD) experiment[1, 2]. As algorithms, it offers the Nelder-Mead method[3], the grid search method[4], the
Bayesian optimization method[5], and the replica exchange Monte Carlo method[6]. In the future, we plan to add
other direct problem solvers and search algorithms in 2DMAT.

[1] As a review, see Y. Fukaya, et al., J. Phys. D: Appl. Phys. 52, 013002 (2019).

[2] This software has been developed by T. Hanada in Tohoku University. T. Hanada, H. Daimon, and S. Ino, Phys.
Rev. B 51, 13320 (1995).

[3] K. Tanaka, T. Hoshi, I. Mochizuki, T. Hanada, A. Ichimiya, and T. Hyodo, Acta. Phys. Pol. A 137, 188 (2020).

[4] K. Tanaka, I. Mochizuki, T. Hanada, A. Ichimiya, T. Hyodo, and T. Hoshi, JJAP Conf. Series, in press,
arXiv:2002.12165.

[5] The python package PHYSBO is used for Bayesian optimization.

[6] K. Hukushima and K. Nemoto, J. Phys. Soc. Japan, 65, 1604 (1996), R. Swendsen and J. Wang, Phys. Rev. Lett.
57, 2607 (1986).

1.2 License

This package is distributed under GNU General Public License version 3 (GPL v3).

Copyright (c) <2020-> The University of Tokyo. All rights reserved.

This software was developed with the support of “Project for advancement of software usability in materials science”
of The Institute for Solid State Physics, The University of Tokyo. We hope that you cite the following reference when
you publish the results using 2DMAT:

Kazuyuki Tanaka, Takeo Hoshi, Izumi Mochizuki, Takashi Hanada, Ayahiko Ichimiya, Toshio Hyodo, Acta. Phys.
Pol. A 137(3) 188 - 192 2020

1

https://iopscience.iop.org/article/10.1088/1361-6463/aadf14
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.51.13320
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.51.13320
http://przyrbwn.icm.edu.pl/APP/PDF/137/app137z2p25.pdf
https://arxiv.org/abs/2002.12165
https://arxiv.org/abs/2002.12165
https://www.pasums.issp.u-tokyo.ac.jp/physbo
https://journals.jps.jp/doi/10.1143/JPSJ.65.1604
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2607
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2607
https://doi.org/10.12693/APhysPolA.137.188
https://doi.org/10.12693/APhysPolA.137.188

2DMAT’s Documentation, Release 1.0

1.3 Version Information

• v1.0.0: 2021-03-12

• v0.1.0: 2021-02-08

1.4 Main developers

2DMAT has been developed by following members.

• v0.1.0 -

– Y. Motoyama (The Institute for Solid State Physics, The University of Tokyo)

– K. Yoshimi (The Institute for Solid State Physics, The University of Tokyo)

– T. Hoshi (Department of Applied Mathematics and Physics, Tottori University)

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALL OF PY2DMAT

2.1 Prerequisites

• Python3 (>=3.6)

– The following Python packages are required.

* toml

* numpy

– Optional packages

* mpi4py (required for grid search)

* scipy (required for Nelder-Mead method)

* physbo (>=0.3, required for Baysian optimization)

2.2 How to download and install

You can install the py2dmat python package and the py2dmat command using the method shown below.

• Installation using PyPI (recommended)

– python3 -m pip install py2dmat

* --user option to install locally ($HOME/.local)

* If you use py2dmat[all], optional packages will be installed at the same time.

• Installation from source code

1. git clone https://github.com/issp-center-dev/2DMAT

2. python3 -m pip install ./2DMAT

– The pip version must be 19 or higher (can be updated with python3 -m pip install -U
pip).

• Download the sample files

– Sample files are included in the source code.

– git clone https://github.com/issp-center-dev/2DMAT

Note that among the direct problem solvers used in py2dmat, the following solver must be installed separately:

• TRHEPD forward problem solver (sim-trhepd-rheed)

3

2DMAT’s Documentation, Release 1.0

Please refer to the tutorials of each solver for installation details.

2.3 How to run

In py2dmat , the analysis is done by using a predefined optimization algorithm Algorithm and a direct problem
solver Solver

$ py2dmat input.toml

See Search algorithms for the predefined Algorithm and solver/input for the Solver.

If you want to prepare the Algorithm or Solver by yourself, use the py2dmat package. See (For developers)
User-defined algorithm and solver for details.

2.4 How to uninstall

Please type the following command:

$ python3 -m pip uninstall py2dmat

4 Chapter 2. Install of py2dmat

CHAPTER

THREE

INPUT FILE

As the input file format, TOML format is used. The input file consists of the following four sections.

• base

– Specify the basic parameters about py2dmat .

• solver

– Specify the prarameters about Solver .

• algorithm

– Specify the prarameters about Algorithm .

• runner

– Specify the parameters about Runner .

3.1 [base] section

• dimension

Format: Integer

Description: Dimension of the search space (number of parameters to search)

• output_dir

Format: string (default: The directory where the program was executed)

Description: Name of the directory to output the results.

3.2 [solver] section

The name determines the type of solver. Each parameter is defined for each solver.

• name

Format: String

Description: Name of the solver. The following solvers are available.

– sim-trhepd-rheed : Solver to calculate Total-reflection high energy positron diffraction (TRHEPD)
or Reflection High Energy Electron Diffraction (RHEED) intensities.

– analytical : Solver to provide analytical solutions (mainly used for testing).

5

https://toml.io/ja/

2DMAT’s Documentation, Release 1.0

See Direct Problem Solver for details of the various solvers and their input/output files.

3.3 [algorithm] section

The name determines the type of algorithm. Each parameter is defined for each algorithm.

• name

Format: String

Description: Algorithm name. The following algorithms are available.

– minsearch : Minimum value search using Nelder-Mead method

– mapper : Grid search

– exchange : Replica Exchange Monte Carlo

– bayes : Bayesian optimization

• seed

Format: Integer

Description: A parameter to specify seeds of the pseudo-random number generator used for random generation of initial values, Monte Carlo updates, etc.
For each MPI process, the value of seed + mpi_rank * seed_delta is given as seeds. If omitted,
the initialization is done by the Numpy’s prescribed method.

• seed_delta

Format: Integer (default: 314159)

Description: A parameter to calculate the seed of the pseudo-random number generator for each MPI process.
For details, see the description of seed.

See Search algorithms for details of the various algorithms and their input/output files.

3.4 [runner] section

This section sets the configuration of Runner, which bridges Algorithm and Solver. It has a subsection log

3.4.1 [log] section

Settings related to logging of solver calls.

• filename

Format: String (default: “runner.log”)

Description: Name of log file.

• interval

Format: Integer (default: 0)

Description: The log will be written out every time solver is called interval times. If the value is less
than or equal to 0, no log will be written.

6 Chapter 3. Input file

https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng

2DMAT’s Documentation, Release 1.0

• write_result

Format: Boolean (default: false)

Description: Whether to record the output from solver.

• write_input

Format: Boolean (default: false)

Description: Whether to record the input to solver.

3.4. [runner] section 7

2DMAT’s Documentation, Release 1.0

8 Chapter 3. Input file

CHAPTER

FOUR

OUTPUT FILES

See Direct Problem Solver and Search algorithms for the output files of each Solver and Algorithm.

4.1 Common file

4.1.1 time.log

The total time taken for the calculation for each MPI rank is outputted. These files will be output under the subfolders
of each rank respectively. The time taken to pre-process the calculation, the time taken to compute, and the time taken
to post-process the calculation are listed in the prepare , run , and post sections.

The following is an example of the output.

#prepare
total = 0.007259890999989693

#run
total = 1.3493346729999303
- file_CM = 0.0009563499997966574
- submit = 1.3224223930001244

#post
total = 0.000595873999941432

4.1.2 runner.log

The log information about solver calls for each MPI rank is outputted. These files will be output under the subfolder
of each rank. The output is only available when the runner.log.interval parameter is a positive integer in the
input.

• The first column is the serial number of the solver call.

• The second column is the time elapsed since the last solver call.

• The third column is the time elapsed since the start of the calculation.

The following is an example of the output.

$1: num_calls
$2: elapsed_time_from_last_call
$3: elapsed_time_from_start

1 0.0010826379999999691 0.0010826379999999691
2 6.96760000000185e-05 0.0011523139999999876

(continues on next page)

9

2DMAT’s Documentation, Release 1.0

(continued from previous page)

3 9.67080000000009e-05 0.0012490219999999885
4 0.00011765699999999324 0.0013666789999999818
5 4.965899999997969e-05 0.0014163379999999615
6 8.666900000003919e-05 0.0015030070000000006

...

10 Chapter 4. Output files

CHAPTER

FIVE

DIRECT PROBLEM SOLVER

Direct problem solver Solver calculates the function to be optimized 𝑓(𝑥) at the search parameter 𝑥.

5.1 analytical solver

analytical is a Solver that computes a predefined benchmark function 𝑓(𝑥) for evaluating the performance of
search algorithms.

5.1.1 Input parameters

The funtion_name parameter in the solver section specifies the function to use.

• function_name

Format: string

Description: Function name. The following functions are available.

– quadratics

* Quadratic function

𝑓(�⃗�) =

𝑁∑︁
𝑖=1

𝑥2
𝑖

* The optimized value 𝑓(�⃗�*) = 0 (∀𝑖𝑥*
𝑖 = 0)

– rosenbrock

* Rosenbrock function

𝑓(�⃗�) =

𝑁−1∑︁
𝑖=1

[︀
100(𝑥𝑖+1 − 𝑥2

𝑖)2 + (𝑥𝑖 − 1)2
]︀

* The optimized value 𝑓(�⃗�*) = 0 (∀𝑖𝑥*
𝑖 = 1)

– ackley

* Ackley function

𝑓(�⃗�) = 20 + 𝑒− 20 exp

⎡⎣−0.2

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

𝑥2
𝑖

⎤⎦− exp

[︂
1

𝑁
cos (2𝜋𝑥𝑖)

]︂
* The optimized value 𝑓(�⃗�*) = 0 (∀𝑖𝑥*

𝑖 = 0)

11

https://en.wikipedia.org/wiki/Rosenbrock_function
https://en.wikipedia.org/wiki/Ackley_function

2DMAT’s Documentation, Release 1.0

– himmerblau

* Himmerblau function

𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2

* The optimized value 𝑓(3, 2) = 𝑓(−2.805118, 3.131312) = 𝑓(−3.779310,−3.283186) =
𝑓(3.584428,−1.848126) = 0

5.2 sim-trhepd-rheed solver

sim-trhepd-rheed is a Solver that uses `sim-trhepd-rheed`_ to calculate the diffraction rocking curve from
the atomic position 𝑥 and returns the deviation from the experimental rocking curve as 𝑓(𝑥).

5.2.1 Preparation

You will need to install `sim-trhepd-rheed`_ beforehand.

1. Download the source code from the official sim-trhepd-rheed website.

2. Move to sim-trhepd-rheed/src folder and make bulk.exe and surf.exe by using make.

Before running py2dmat, run bulk.exe to create the bulk data. The surf.exe is called from py2dmat.

5.2.2 Input parameters

Input parameters can be specified in subcsections config, post, param, reference in solver section.

[config] section

• surface_exec_file

Format: string (default: “surf.exe”)

Description: Path to sim-trhepd-rheed surface reflection solver surf.exe.

• surface_input_file

Format: string (default: “surf.txt”)

Description: Input file for surface structure.

• bulk_output_file

Format: string (default: “bulkP.b”)

Description: Output file for bulk structure.

• surface_output_file

Format: string (default: “surf-bulkP.s”)

Description: Output file for surface structure.

• calculated_first_line

Format: integer (default: 5)

Description: One of the parameters that specifies the range of output files to be read, calculated by the solver.
This parameter specifies the first line to be read.

12 Chapter 5. Direct Problem Solver

https://en.wikipedia.org/wiki/Himmelblau%27s_function

2DMAT’s Documentation, Release 1.0

• calculated_last_line

Format: integer (default: 60)

Description: One of the parameters that specifies the range of output files to be read, calculated by the solver.
This parameter specifies the last line to be read.

• row_number

Format: integer (default: 8)

Description: One of the parameters that specifies the range of output files to be read, calculated by the solver.
This parameter specifies the column to be read.

[post] section

• normalization

Format: string (“TOTAL” or “MAX”, default: “TOTAL”)

Description: This parameter specifies whether the R-value is normalized by the sum of the whole values or by
the maximum value.

• Rfactor_type

Format: string (“A” or “B”, default: “A”)

Description: This parameter specifies how to calculate the R-factor. “A” means the normal method, “B” means
Pendry’s R-factor is used.

• omega

Format: float (default: 0.5)

Description: This parameter specifies the half-width of convolution.

[param] section

• string_list

Format: list of string. The length should match the value of dimension (default: [“value_01”, “value_02”]).

Description: List of placeholders to be used in the reference template file to create the input file for the solver.
These strings will be replaced with the values of the parameters being searched for.

• degree_max

Format: float (default: 6.0)

Description: Maximum angle (in degrees)

5.2. sim-trhepd-rheed solver 13

2DMAT’s Documentation, Release 1.0

[reference] section

• path

Format: string (default: experiment.txt)

Description: Path to the experimental data file.

• first

Format: integer (default: 1)

Description: One of the parameters that specify the range of experimental data files to be read. This parameter
specifies the first line of the experimental file to be read.

• last

Format: integer (default: 56)

Description: One of the parameters that specify the range of experimental data files to be read. This parameter
specifies the last line of the experimental file to be read.

5.2.3 Reference file

Input template file

The input template file template.txt is a template for creating an input file for surf.exe. The parameters to be
moved in py2dmat (such as the atomic coordinates you want to find) should be replaced with the appropriate string,
such as value_*. The strings to be used are specified by string_list in the [solver] - [param] section of
the input file for the solver. An example template is shown below.

2 ,NELMS, -------- Ge(001)-c4x2
32,1.0,0.1 ,Ge Z,da1,sap
0.6,0.6,0.6 ,BH(I),BK(I),BZ(I)
32,1.0,0.1 ,Ge Z,da1,sap
0.4,0.4,0.4 ,BH(I),BK(I),BZ(I)
9,4,0,0,2, 2.0,-0.5,0.5 ,NSGS,msa,msb,nsa,nsb,dthick,DXS,DYS
8 ,NATM
1, 1.0, 1.34502591 1 value_01 ,IELM(I),ocr(I),X(I),Y(I),Z(I)
1, 1.0, 0.752457792 1 value_02
2, 1.0, 1.480003343 1.465005851 value_03
2, 1.0, 2 1.497500418 2.281675
2, 1.0, 1 1.5 1.991675
2, 1.0, 0 1 0.847225
2, 1.0, 2 1 0.807225
2, 1.0, 1.009998328 1 0.597225
1,1 ,(WDOM,I=1,NDOM)

In this case, value_01, value_02, and value_03 are the parameters to be moved in py2dmat.

14 Chapter 5. Direct Problem Solver

2DMAT’s Documentation, Release 1.0

Target file

This file (experiment.txt) contains the data to be targeted. The first column contains the angle, and the second
column contains the calculated value of the reflection intensity multiplied by the weight. An example of the file is
shown below.

0.100000 0.002374995
0.200000 0.003614789
0.300000 0.005023215
0.400000 0.006504978
0.500000 0.007990674
0.600000 0.009441623
0.700000 0.010839445
0.800000 0.012174578
0.900000 0.013439485
1.000000 0.014625579
...

5.2.4 Output file

For sim-trhepd-rheed, the files output by surf.exe will be output in the Log%%%%% folder under the folder
with the rank number. This section describes the own files that are output by this solver.

stdout

It contains the standard output of surf.exe. An example is shown below.

bulk-filename (end=e) ? :
bulkP.b
structure-filename (end=e) ? :
surf.txt
output-filename :
surf-bulkP.s

RockingCurve.txt

This file is located in the Log%%%%% folder. The first line is the header, and the second and subsequent lines are
the angle, convoluted calculated/experimental values, normalized calculated/experimental values, and raw calculated
values in that order. An example is shown below.

#degree convolution_I_calculated I_experiment convolution_I_calculated(normalized) I_
→˓experiment(normalized) I_calculated
0.1 0.0023816127859192407 0.002374995 0.004354402952499057 0.005364578226620574 0.
→˓001722
0.2 0.003626530149456865 0.003614789 0.006630537795012198 0.008164993342397588 0.
→˓003397
0.3 0.00504226607469267 0.005023215 0.009218987407498791 0.011346310125551366 0.005026
0.4 0.006533558304296079 0.006504978 0.011945579793136154 0.01469327865677437 0.006607
0.5 0.00803056955158873 0.007990674 0.014682628499657693 0.018049130948243314 0.008139
0.6 0.009493271317558538 0.009441623 0.017356947736613827 0.021326497600946535 0.00962
0.7 0.010899633015118851 0.010839445 0.019928258053867838 0.024483862338931763 0.01105
...

5.2. sim-trhepd-rheed solver 15

2DMAT’s Documentation, Release 1.0

16 Chapter 5. Direct Problem Solver

CHAPTER

SIX

SEARCH ALGORITHMS

py2dmat searches the parameter space X ∋ 𝑥 by using the search algorithm Algorithm and the result of Solver
𝑓(𝑥). In this section, the search algorithms implemented in py2dmat are described.

6.1 Nelder-Mead method minsearch

When minsearch is selcted, the optimization by the Nelder-Mead method (a.k.a. downhill simplex method) will be
done. In the Nelder-Mead method, the dimension of the parameter space is 𝐷, and the optimal solution is searched by
systematically moving pairs of 𝐷 + 1 coordinate points according to the value of the objective function at each point.

An important hyperparameter is the initial value of the coordinates. Although it is more stable than the simple steepest
descent method, it still has the problem of being trapped in the local optimum solution, so it is recommended to repeat
the calculation with different initial values several times to check the results.

In 2DMAT, the Scipy’s function scipy.optimize.minimize(method="Nelder-Mead") is used. For de-
tails, see the official document .

6.1.1 Preparation

You will need to install scipy .:

python3 -m pip install scipy

6.1.2 Input parameters

It has subsections param and minimize.

[param] section

• initial_list

Format: List of float. The length should match the value of dimension.

Description: Initial value of the parameter. If not defined, it will be initialized uniformly and randomly.

• unit_list

Format: List of float. The length should match the value of dimension.

17

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference

2DMAT’s Documentation, Release 1.0

Description: Units for each parameter. In the search algorithm, each parameter is divided by each of these
values to perform a simple dimensionless and normalization. If not defined, the value is 1.0 for all dimen-
sions.

• min_list

Format: List of float. The length should match the value of dimension.

Description: The minimum value the parameter can take.

• max_list

Format: List of float. The length should match the value of dimension.

Description: The maximum value the parameter can take.

[minimize] section

Set the hyperparameters for the Nelder-Mead method. See the documentation of scipy.optimize.minimize for details.

• initial_scale_list

Format: List of float. The length should match the value of dimension.

Description: The difference value that is shifted from the initial value in order to create the initial simplex for the
Nelder-Mead method. The initial_simplex is given by the sum of initial_list and the dimension
of the initial_list plus one component of the initial_scale_list. If not defined, scales at each
dimension are set to 0.25.

• xatol

Format: Float (default: 1e-4)

Description: Parameters used to determine convergence of the Nelder-Mead method.

• fatol

Format: Float (default: 1e-4)

Description: Parameters used to determine convergence of the Nelder-Mead method.

• maxiter

Format: Integer (default: 10000)

Description: Maximum number of iterations for the Nelder-Mead method.

• maxfev

Format: Integer (default: 100000)

Description: Maximum number of times to evaluate the objective function.

6.1.3 Output files

SimplexData.txt

Outputs information about the process of finding the minimum value. The first line is a header, the second and
subsequent lines are step, the values of variables defined in string_list in the [solver] - [param] sections
of the input file, and finally the value of the function.

The following is an example of the output.

18 Chapter 6. Search algorithms

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html

2DMAT’s Documentation, Release 1.0

#step z1 z2 z3 R-factor
0 5.25 4.25 3.5 0.015199251773721183
1 5.25 4.25 3.5 0.015199251773721183
2 5.229166666666666 4.3125 3.645833333333333 0.013702918021532375
3 5.225694444444445 4.40625 3.5451388888888884 0.012635279378225261
4 5.179976851851851 4.348958333333334 3.5943287037037033 0.006001660077530159
5 5.179976851851851 4.348958333333334 3.5943287037037033 0.006001660077530159

res.txt

The value of the final objective function and the value of the parameters at that time are described. The objective func-
tion is listed first, followed by the values of the variables defined in string_list in the [solver] - [param]
sections of the input file, in that order.

The following is an example of the output.

fx = 7.382680568652868e-06
z1 = 5.230524973874179
z2 = 4.370622919269477
z3 = 3.5961444501081647

6.2 Direct parallel search mapper

mapper_mpi is an algorithm to search for the minimum value by computing 𝑓(𝑥) on all the candidate points in the
parameter space prepared in advance. In the case of MPI execution, the set of candidate points is divided into equal
parts and automatically assigned to each process to perform trivial parallel computation.

6.2.1 Preparation

For MPI parallelism, you need to install mpi4py.:

python3 -m pip install mpi4py

6.2.2 Input parameters

[param] section

In this section, the search parameter space is defined.

If mesh_path is defined, it is read from a mesh file. In the mesh file, one line defines one point in the parameter space,
the first column is the data number, and the second and subsequent columns are the coordinates of each dimension.

If mesh_path is not defined, min_list, max_list, and num_list are used to create an evenly spaced grid for
each parameter.

• mesh_path

Format: String

Description: Path to the mesh definition file.

6.2. Direct parallel search mapper 19

https://mpi4py.readthedocs.io/en/stable/

2DMAT’s Documentation, Release 1.0

• min_list

Format: List of float. The length should match the value of dimension.

Description: The minimum value the parameter can take.

• max_list

Format: List of float.The length should match the value of dimension.

Description: The maximum value the parameter can take.

• num_list

Format: List of integer. The length should match the value of dimension.

Description: The number of grids the parametar can take at each dimension.

6.2.3 Refernce file

Mesh definition file

Define the grid space to be explored in this file. The first column is the index of the mesh, and the second and
subsequent columns are the values of variables defined in string_list in the [solver.param] section.

Below, a sample file is shown.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

6.2.4 Output file

ColorMap.txt

This file contains the candidate parameters for each mesh and the R-factor at that time. The mesh data is listed in
the order of the variables defined in string_list in the [solver] - [param] sections of the input file, and the
value of the R-factor is listed last.

Below, output example is shown.

6.000000 6.000000 0.047852
6.000000 5.750000 0.055011
6.000000 5.500000 0.053190
6.000000 5.250000 0.038905
6.000000 5.000000 0.047674
6.000000 4.750000 0.065919
6.000000 4.500000 0.053675
6.000000 4.250000 0.061261
6.000000 4.000000 0.069351

(continues on next page)

20 Chapter 6. Search algorithms

2DMAT’s Documentation, Release 1.0

(continued from previous page)

6.000000 3.750000 0.071868
...

6.3 Bayse optimization bayes

bayes is an Algorithm that uses Bayesian optimization to perform parameter search. The implementation is based
on PHYSBO.

6.3.1 Preparation

You will need to install PHYSBO beforehand.:

python3 -m pip install physbo

If mpi4py is installed, MPI parallel computing is possible.

6.3.2 Input parameters

[algorithm.param] section

In this section, the search parameter space is defined.

If mesh_path is defined, it will be read from a mesh file. In a mesh file, one line gives one point in the param-
eter space, the first column is the data number, and the second and subsequent columns are the coordinates of each
dimension.

If mesh_path is not defined, min_list, max_list, and num_list are used to create an evenly spaced grid for
each parameter.

• mesh_path

Format: String

Description: The path to a reference file that contains information about the mesh data.

• min_list

Format: List of float. The length should match the value of dimension.

Description: The minimum value the parameter can take.

• max_list

Format: List of float.The length should match the value of dimension.

Description: The maximum value the parameter can take.

• num_list

Format: List of integer. The length should match the value of dimension.

Description: The number of grids the parametar can take at each dimension.

6.3. Bayse optimization bayes 21

https://www.pasums.issp.u-tokyo.ac.jp/physbo/en
https://www.pasums.issp.u-tokyo.ac.jp/physbo/en
https://mpi4py.readthedocs.io/en/stable/

2DMAT’s Documentation, Release 1.0

[algorithm.bayes] section

The hyper parameters are defined.

• random_max_num_probes

Format: Integer (default: 20)

Description: Number of random samples to be taken before Bayesian optimization (random sampling is needed
if parameters and scores are not available at the beginning).

• bayes_max_num_probes

Format: Integer (default: 40)

Description: Number of times to perform Bayesian optimization.

• score

Format: String (default: TS)

Description: Parameter to specify the score function. EI (expected improvement), PI (probability of improve-
ment), and TS (Thompson sampling) can be chosen.

• interval

Format: Integer (default: 5)

Description: The hyperparameters are learned at each specified interval. If a negative value is specified, no hy-
perparameter learning will be performed. If a value of 0 is specified, hyperparameter learning will be performed
only in the first step.

• num_rand_basis

Format: Integer (default: 5000)

Description: Number of basis functions; if 0 is specified, the normal Gaussian process is performed without
using the Bayesian linear model.

6.3.3 Reference file

Mesh definition file

Define the grid space to be explored in this file. The first column is the index of the mesh, and the second and
subsequent columns are the values of variables defined in string_list in the [solver.param] section.

Below, a sample file is shown.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

22 Chapter 6. Search algorithms

2DMAT’s Documentation, Release 1.0

6.3.4 Output files

BayesData.txt

At each step of the optimization process, the values of the parameters and the corresponding objective functions are
listed in the order of the optimal parameters so far and the searched parameters at that step.

#step z1 z2 R-factor z1_action z2_action R-factor_action
0 4.75 4.5 0.05141906746102885 4.75 4.5 0.05141906746102885
1 4.75 4.5 0.05141906746102885 6.0 4.75 0.06591878368102033
2 5.5 4.25 0.04380131351780189 5.5 4.25 0.04380131351780189
3 5.0 4.25 0.02312528177606794 5.0 4.25 0.02312528177606794
...

6.3.5 Algorithm Description

Bayesian optimization (BO) is an optimization algorithm that uses machine learning as an aid, and is particularly
powerful when it takes a long time to evaluate the objective function.

In BO, the objective function 𝑓(�⃗�) is approximated by a model function (often a Gaussian process) 𝑔(�⃗�) that is quick
to evaluate and easy to optimize. The 𝑔 is trained to reproduce well the value of the objective function {�⃗�𝑖}𝑁𝑖=1 at some
suitably predetermined points (training data set) {𝑓(�⃗�𝑖)}𝑁𝑖=1.

At each point in the parameter space, we propose the following candidate points for computation �⃗�𝑁+1, where the
expected value of the trained 𝑔(�⃗�) value and the “score” (acquition function) obtained from the error are optimal.
The training is done by evaluating 𝑓(�⃗�𝑁+1), adding it to the training dataset, and retraining 𝑔. After repeating these
searches, the best value of the objective function as the optimal solution will be returned.

A point that gives a better expected value with a smaller error is likely to be the correct answer, but it does not contribute
much to improving the accuracy of the model function because it is considered to already have enough information.
On the other hand, a point with a large error may not be the correct answer, but it is a place with little information
and is considered to be beneficial for updating the model function. Selecting the former is called “utilization,” while
selecting the latter is called “exploration,” and it is important to balance both. The definition of “score” defines how to
choose between them.

In 2DMAT, we use PHYSBO as a library for Bayesian optimization. PHYSBO, like mapper_mpi, computes a
“score” for a predetermined set of candidate points, and proposes an optimal solution. MPI parallel execution is
possible by dividing the set of candidate points. In addition, we use a kernel that allows us to evaluate the model
function and thus calculate the “score” with a linear amount of computation with respect to the number of training data
points 𝑁 . In PHYSBO, “expected improvement (EI)”, “probability of improvement (PI)”, and “Thompson sampling
(TS)” are available as “score” functions.

6.4 Replica exchange Monte Carlo exchange

exchange explores the parameter space by using the replica exchange Monte Carlo (RXMC) method.

6.4. Replica exchange Monte Carlo exchange 23

https://en.wikipedia.org/wiki/Bayesian_optimization
https://www.pasums.issp.u-tokyo.ac.jp/physbo/en

2DMAT’s Documentation, Release 1.0

6.4.1 Preparation

mpi4py should be installed.

python3 -m pip install mpi4py

6.4.2 Input parameters

This has two subsections algorithm.param and algorithm.exchange .

[algorithm.param]

• initial_list

Format: List of float. Length should be equal to dimension.

Description: Initial value of parameters. If not defined, these will be initialize randomly.

• unit_list

Format: List of float. Length should be equal to dimension.

Description: Unit length of each parameter. Algorithm makes parameters dimensionless and normalized by
dividing these by unit_list. If not defined, each component will be 1.0.

• min_list

Format: List of float. Length should be equal to dimension.

Description: Minimum value of each parameter.

• max_list

Format: List of float. Length should be equal to dimension.

Description: Maximum value of each parameter.

[algorithm.exchange]

• numsteps

Format: Integer

Description: The number of Monte Carlo steps.

• numsteps_exchange

Format: Integer

Description: The number of interval Monte Carlo steps between replica exchange.

• Tmin

Format: Float (default: 0.1)

Description: The minimum value of the “temperature”.

• Tmax

Format: Float (default: 10.0)

Description: The maximum value of the “temperature”.

24 Chapter 6. Search algorithms

https://mpi4py.readthedocs.io/en/stable/

2DMAT’s Documentation, Release 1.0

• Tlogspace

Format: Boolean (default: true)

Description: Whether to assign “temperature” to replicas equally spaced in the logarithmic space or not.

6.4.3 Output files

RANK/trial.txt

This file stores the suggested parameters and the corresponding value returned from the solver for each replica. The
first column is the index of the MC step. The second column is the temperature of the replica. The third column is the
value of the solver. The remaining columns are the coordinates.

Exapmle:

step T fx z1 z2
0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0.004999999999999999 0.0758494287185766 2.811346329442423 3.691101784194861
2 0.004999999999999999 0.08566823949124412 3.606664760390988 3.2093903670436497
3 0.004999999999999999 0.06273922648753057 4.330900869594549 4.311333132184154

RANK/result.txt

This file stores the sampled parameters and the corresponding value returned from the solver for each replica. This
has the same format as trial.txt.

step T fx z1 z2
0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
2 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
3 0.004999999999999999 0.06273922648753057 4.330900869594549 4.311333132184154

best_result.txt

The optimal value of the solver and the corresponding parameter among the all samples.

nprocs = 4
rank = 2
step = 65
fx = 0.008233957976993406
z1 = 4.221129370933539
z2 = 5.139591716517661

6.4. Replica exchange Monte Carlo exchange 25

2DMAT’s Documentation, Release 1.0

Algorithm

6.4.4 Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) sampling explores the parameter space by moving walkers �⃗� stochastically
according to the weight function 𝑊 (�⃗�). For the weight function, the Boltzmann factor 𝑊 (�⃗�) = 𝑒−𝑓(�⃗�)/𝑇 is generally
adopted, where 𝑇 > 0 is the “temperature.” It is impossible in the many cases, unfortunately, to sample walkers
according to 𝑊 directly. Insteadly, the MCMC method moves walkers slightly and generates a time series {�⃗�𝑡} such
that the distribution of the walkers obeys 𝑊 . Let us call the transision probability from �⃗� to �⃗�′ as 𝑝(�⃗�′|�⃗�). When 𝑝 is
determined by the following condition (“the balance condition”)

𝑊 (�⃗�′) =
∑︁
�⃗�

𝑝(�⃗�′|�⃗�)𝑊 (�⃗�),

the distribution of the generated time series {�⃗�𝑡} will converges to 𝑊 (�⃗�)1. Practically, the stronger condition (“the
detailed balance condition”)

𝑝(�⃗�|�⃗�′)𝑊 (�⃗�′) = 𝑊 (�⃗�)𝑝(�⃗�′|�⃗�)

is usually imposed. The detailed balance condition returns to the balance condition by taking the summation of �⃗�.

2DMAT adopts the Metropolis-Hasting (MH) method for solving the detailed balance condition. The MH method
splits the transition process into the suggestion process and the acceptance process.

1. Generate a candidate �⃗� with the suggestion probability 𝑃 (�⃗�|�⃗�𝑡).

• As 𝑃 , use a simple distribution such as the normal distribution with centered at x.

2. Accept the candidate �⃗� with the acceptance probability 𝑄(�⃗�|�⃗�𝑡).

• If accepted, let �⃗�𝑡+1 be vec{x}.

• Otherwise, let �⃗�𝑡+1 be vec{x}_t.

The whole transision probability is the product of these two ones, 𝑝(�⃗�|𝑥𝑡) = 𝑃 (�⃗�|�⃗�𝑡)𝑄(�⃗�|�⃗�𝑡). The acceptance
probability 𝑄(�⃗�|�⃗�𝑡) is defined as

𝑄(�⃗�|�⃗�𝑡) = min

[︂
1,

𝑊 (�⃗�)𝑃 (�⃗�𝑡|�⃗�)

𝑊 (�⃗�𝑡)𝑃 (�⃗�𝑡|�⃗�)

]︂
.

It is easy to verify that the detailed balance condition is satisfied by substituting it into the detailed balance condition
equation.

When adopting the Boltzmann factor for the weight and a symmetry distribution 𝑃 (�⃗�|�⃗�𝑡) = 𝑃 (�⃗�𝑡|�⃗�) for the suggestion
probability, the acceptance probability 𝑄 will be the following simple form:

𝑄(�⃗�|�⃗�𝑡) = min

[︂
1,

𝑊 (�⃗�)

𝑊 (�⃗�𝑡)

]︂
= min

[︂
1, exp

(︂
−𝑓(�⃗�) − 𝑓(�⃗�𝑡)

𝑇

)︂]︂
.

By saying ∆𝑓 = 𝑓(�⃗�)−𝑓(�⃗�𝑡) and using the fact 𝑄 = 1 for ∆𝑓 ≤ 0, the procedure of MCMC with the MH algorithm
is the following:

1. Choose a candidate from near the current position and calculate 𝑓 and ∆𝑓 .

2. If ∆𝑓 ≤ 0, that is, the walker is descending, accept it.

3. Otherwise, accept it with the probability 𝑄 = 𝑒−Δ𝑓/𝑇 .

4. Repeat 1-3.

The solution is given as the point giving the minimum value of 𝑓(�⃗�). The third process of the above procedure endures
that walkers can climb over the hill with a height of ∆𝑓 ∼ 𝑇 , the MCMC sampling can escape from local minima.

1 To be precisely, the non-periodicality and the ergodicity are necessary for convergence.

26 Chapter 6. Search algorithms

2DMAT’s Documentation, Release 1.0

6.4.5 Replica exchange Monte Carlo

The “temperature” 𝑇 is one of the most important hyper parameters in the MCMC sampling. The MCMC sampling
can climb over the hill with a height of 𝑇 but cannot easily escape from the deeper valley than 𝑇 . It is why we should
increase the temperature in order to avoid stuck to local minima. On the other hand, since walkers cannot see the
smaller valleys than 𝑇 , the precision of the obtained result min 𝑓(�⃗�) becomes about 𝑇 , and it is necessary to decrease
the temperature in order to achieve more precise result. This dilemma leads us that we should tune the temperature
carefully.

One of the ways to overcome this problem is to update temperature too. For example, simulated annealing decreases
temperature as the iteration goes. Another algorithm, simulated tempering, treats temperature as another parameter
to be sampled, not a fixed hyper parameter, and update temperature after some iterations according to the (detailed)
balance condition. Simulated tempering studies the details of a valley by cooling and escapes from a valley by heating.
Replica exchange Monte Carlo (RXMC), also known as parallel tempering, is a parallelized version of the simulated
tempering. In this algorithm, several copies of a system with different temperature, called as replicas, will be simulated
in parallel. Then, with some interval of steps, each replica exchanges temperature with another one according to the
(detailed) balance condition. As the simulated tempering does, RXMC can observe the details of a valley and escape
from it by cooling and heating. Moreover, because each temperature is assigned to just one replica, the temperature
distribution will not be biased. Using more replicas narrows the temperature interval, and increases the acceptance
ratio of the temperature exchange. This is why this algorithm suits for the massively parallel calculation.

It is recommended that users perform minsearch optimization starting from the result of exchange, because the
RXMC result has uncertainty due to temperature.

footnote

6.4. Replica exchange Monte Carlo exchange 27

2DMAT’s Documentation, Release 1.0

28 Chapter 6. Search algorithms

CHAPTER

SEVEN

TUTORIALS

The direct problem solver, sim_trhepd_rheed, is based on the Reflection-High-Energy Electron Diffraction
(RHEED, TRHEPD) analysis software developed by Prof. Takashi Hanada at Tohoku University. In TRHEPD,
when atomic coordinates are given, diffraction data is given as a simulation result. Therefore, we are dealing with
the direct problem from atomic coordinates to diffraction data. On the other hand, in many cases, diffraction data is
given experimentally, and the atomic coordinates are required to reproduce the experimental data. These are inverse
problems to the above direct problems.

In 2DMAT, the algorithms for solving the inverse problem can be selected as following algorithms:

• minsearch

Estimating plausible atomic coordinates using the Nealder-Mead method.

• mapper_mpi

Estimate plausible atomic coordinates by searching the entire search grid for a given parameter.

• bayes

Estimate plausible atomic coordinates using Bayesian optimization.

• exchange

Sampling plausible atomic coordinates using a replica exchange Monte Carlo method.

In this tutorial, we will first introduce how to run the sequential problem program, and then how to run minsearch ,
mapper_mpi, bayes, and exchange .

7.1 TRHEPD Direct Problem Solver

As one of the forward problem solvers, 2DMAT provides a wrapper for the program sim-trhepd-rheed , which cal-
culates the intensity of reflection fast (positron) electron diffraction (RHEED, TRHEPD) (A. Ichimiya, Jpn. J. Appl.
Phys. 22, 176 (1983); 24, 1365 (1985)). In this tutorial, we will install and test sim-trhepd-rheed (for details, see the
official web page for sim-trhepd-rheed).

29

https://github.com/sim-trhepd-rheed/sim-trhepd-rheed/
https://github.com/sim-trhepd-rheed/sim-trhepd-rheed/

2DMAT’s Documentation, Release 1.0

7.1.1 Download and Install

First, in the tutorial, we assume that you are at the location where the 2DMAT folder is located.

$ ls -d 2DMAT
2DMAT/

Get the source codes from the sim-trhepd-rheed repository on GitHub and build it.

git clone http://github.com/sim-trhepd-rheed/sim-trhepd-rheed
cd sim-trhepd-rheed/src
make

If make is successful, bulk.exe and surf.exe will be created.

7.1.2 Calculation execution

In sim-trhepd-rheed, the bulk part of the surface structure is first calculated with bulk.exe. Then, using the results of
the bulk.exe calculation (the bulkP.b file), the surface portion of the surf.exe surface structure is calculated.

In this tutorial, we will actually try to do the TRHEPD calculation. The sample input files are located in sample/
sim-trhepd-rheed in 2DMAT. First, copy this folder to a suitable working folder work.

cd ../../
cp -r 2DMAT/sample/sim-trhepd-rheed work
cd work

Next, copy bulk.exe and surf.exe to work.

cp ../sim-trhepd-rheed/src/bulk.exe .
cp ../sim-trhepd-rheed/src/surf.exe .

Execute bulk.exe.

./bulk.exe

Then, the bulk file bulkP.b will be generated with the following output.

0:electron 1:positron ?
P
input-filename (end=e) ? :
bulk.txt
output-filename :
bulkP.b

Next, execute surf.exe.

./surf.exe

Then, the following standard output will be seen.

bulk-filename (end=e) ? :
bulkP.b
structure-filename (end=e) ? :
surf.txt
output-filename :

(continues on next page)

30 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

(continued from previous page)

surf-bulkP.md
surf-bulkP.s

After execution, the files surf-bulkP.md, surf-bulkP.s and SURFYYYYMMDD-HHMMSSlog.txt will be
generated. (YYYYMMDD and HHMMSS are numbers corresponding to the execution date and time).

7.1.3 Visualization of calculation result

The contents of surf-bulkP.s are shown as follow:

#azimuths,g-angles,beams
1 56 13
#ih,ik
6 0 5 0 4 0 3 0 2 0 1 0 0 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0
0.5000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.
→˓1595E-01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.6000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.
→˓1870E-01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.7000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.
→˓2121E-01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.8000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.2171E-02, 0.
→˓1927E-01, 0.2171E-02, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.9000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.4397E-02, 0.
→˓1700E-01, 0.4397E-02, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
0.1000E+01, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.6326E-02, 0.
→˓1495E-01, 0.6326E-02, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00, 0.0000E+00,
...

From the above file, create a rocking curve from the angle on the vertical axis (first column of data after row 5) and
the intensity of the (0,0) peak (eighth column of data after row 5). You can use Gnuplot or other graphing software,
but here we use the program plot_bulkP.py in the 2DMAT/script folder. Run it as follows.

python3 ../2DMAT/script/plot_bulkP.py

The following plot_bulkP.png will be created.

We will convolute and normalize the diffraction intensity data of the 00 peaks. Prepare surf-bulkP.s and run
make_convolution.py.

python3 ../2DMAT/script/make_convolution.py

When executed, the following file convolution.txt will be created.

0.500000 0.010818010
0.600000 0.013986716
0.700000 0.016119093
0.800000 0.017039022
0.900000 0.017084666

... skipped ...
5.600000 0.000728539
5.700000 0.000530758
5.800000 0.000412908
5.900000 0.000341740
6.000000 0.000277553

7.1. TRHEPD Direct Problem Solver 31

2DMAT’s Documentation, Release 1.0

Fig. 7.1: Rocking curve of Si(001)-2x1 surface.

32 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

The first column is the viewing angle, and the second column is the normalized 00-peak diffraction intensity data
written in surf-bulkP.s with a convolution of half-width 0.5.

7.2 Optimization by Nelder-Mead method

In this section, we will explain how to calculate the inverse problem of analyzing atomic coordinates from diffraction
data using the Nelder-Mead method. The specific calculation procedure is as follows.

0. Preparation of the reference file

Prepare the reference file to be matched (in this tutorial, it corresponds to experiment.txt described below).

1. Perform calculations on the bulk part of the surface structure.

Copy bulk.exe to sample/py2dmat/minsearch and run the calculation.

2. Run the main program

Run the calculation using src/py2dmat_main.py to estimate the atomic coordinates.

In the main program, the Nelder-Mead method (using scipy.optimize.fmin) is used.) to find the parameter that
minimizes the deviation (R-value) between the intensity obtained using the solver (in this case surf.exe) and the
intensity listed in the reference file (experiment.txt).

7.2.1 Location of the sample files

The sample files are located in sample/py2dmat/minsearch. The following files are stored in the folder.

• bulk.txt

Input file of bulk.exe.

• experiment.txt , template.txt

Reference file to proceed with calculations in the main program.

• ref.txt

A file containing the answers you want to seek in this tutorial.

• input.toml

Input file of the main program.

• prepare.sh , do.sh

Script prepared for doing all calculation of this tutorial

The following sections describe these files and then show the actual calculation results.

7.2. Optimization by Nelder-Mead method 33

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html

2DMAT’s Documentation, Release 1.0

7.2.2 The reference file

The template.txt file is almost the same format as the input file for surf.exe. The parameters to be run (such
as the atomic coordinates you want to find) are rewritten as value_* or some other appropriate string. The following
is the content of template.txt.

2 ,NELMS, -------- Ge(001)-c4x2
32,1.0,0.1 ,Ge Z,da1,sap
0.6,0.6,0.6 ,BH(I),BK(I),BZ(I)
32,1.0,0.1 ,Ge Z,da1,sap
0.4,0.4,0.4 ,BH(I),BK(I),BZ(I)
9,4,0,0,2, 2.0,-0.5,0.5 ,NSGS,msa,msb,nsa,nsb,dthick,DXS,DYS
8 ,NATM
1, 1.0, 1.34502591 1 value_01 ,IELM(I),ocr(I),X(I),Y(I),Z(I)
1, 1.0, 0.752457792 1 value_02
2, 1.0, 1.480003343 1.465005851 value_03
2, 1.0, 2 1.497500418 2.281675
2, 1.0, 1 1.5 1.991675
2, 1.0, 0 1 0.847225
2, 1.0, 2 1 0.807225
2, 1.0, 1.009998328 1 0.597225
1,1 ,(WDOM,I=1,NDOM)

In this input file, value_01, value_02, and value_03 are used. In the sample folder, there is a reference file
ref.txt to know if the atomic positions are estimated correctly. The contents of this file are

fx = 7.382680568652868e-06
z1 = 5.230524973874179
z2 = 4.370622919269477
z3 = 3.5961444501081647

value_0x corresponds to z_x (x=1, 2, 3). fx is the optimal value of the objective function. The experiment.
txt is a file that is used as a reference in the main program, and is equivalent to convolution.txt, which is
calculated by putting the parameters in ref.txt into template.txt and following the same procedure as in the
tutorial on direct problems. (Note that the input files for bulk.exe and suft.exe are different from those in the
sequential problem tutorial.)

7.2.3 Input file

In this section, we will prepare the input file input.toml for the main program. The details of input.toml can
be found in the input file. This section describes the contents of input.toml in the sample file.

[base]
dimension = 3

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02", "value_03"]
degree_max = 7.0

(continues on next page)

34 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

(continued from previous page)

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

[algorithm]
name = "minsearch"
label_list = ["z1", "z2", "z3"]

[algorithm.param]
min_list = [0.0, 0.0, 0.0]
max_list = [10.0, 10.0, 10.0]
initial_list = [5.25, 4.25, 3.50]

First, [base] section is explained.

• The dimension is the number of variables to be optimized, in this case 3 since we are optimizing three
variables as described in template.txt.

The [solver] section specifies the solver to be used inside the main program and its settings.

• The name is the name of the solver you want to use, which in this tutorial is sim-trhepd-rheed, since we
will be using it for our analysis.

The solver can be configured in the subsections [solver.config], [solver.param], and [solver.
reference].

The [solver.config] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The calculated_first_line specifies the first line to read from the output file.

• The calculated_last_line specifies the last line of the output file to be read.

• The row_number specifies the number of columns in the output file to read.

The [solver.param] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The string_list is a list of variable names to be read in template.txt.

• degree_max specifies the maximum angle in degrees.

The [solver.reference] section specifies the location of the experimental data and the range to read.

• The path specifies the path where the experimental data is located.

• The first specifies the first line of the experimental data file to read.

• The end specifies the last line of the experimental data file to read.

The [algorithm] section specifies the algorithm to use and its settings.

• The name is the name of the algorithm you want to use, in this tutorial we will use minsearch since we will
be using the Nelder-Mead method.

• The label_list is a list of label names to be added to the output of value_0x (x=1,2,3).

The [algorithm.param] section specifies the range of parameters to search and their initial values.

• The min_list and max_list specify the minimum and maximum values of the search range, respectively.

• The initial_list specifies the initial values.

7.2. Optimization by Nelder-Mead method 35

2DMAT’s Documentation, Release 1.0

Other parameters, such as convergence judgments used in the Nelder-Mead method, can be done in the
[algorithm] section, although they are omitted here because the default values are used. See the input file chapter
for details.

7.2.4 Calculation execution

First, move to the folder where the sample files are located (we will assume that you are directly under the directory
where you downloaded this software).

cd sample/py2dmat/minsearch

Copy bulk.exe and surf.exe.

cp ../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

First, run bulk.exe to create bulkP.b.

./bulk.exe

After that, run the main program (the computation time takes only a few seconds on a normal PC).

python3 ../../../src/py2dmat_main.py input.toml | tee log.txt

Then, the standard output will be seen as follows.

Read experiment.txt
z1 = 5.25000
z2 = 4.25000
z3 = 3.50000
[' 5.25000', ' 4.25000', ' 3.50000']
PASS : degree in lastline = 7.0
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.015199251773721183
z1 = 5.50000
z2 = 4.25000
z3 = 3.50000
[' 5.50000', ' 4.25000', ' 3.50000']
PASS : degree in lastline = 7.0
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.04380131351780189
z1 = 5.25000
z2 = 4.50000
z3 = 3.50000
[' 5.25000', ' 4.50000', ' 3.50000']
...

The z1, z2, and z3 are the candidate parameters at each step and the R-factor at that time. The results of each
step are also output to the folder Logxxxxx (where xxxxxx is the number of steps). The final estimated parameters
will be output to res.dat. In the current case, the following result is obtained:

z1 = 5.230524973874179
z2 = 4.370622919269477
z3 = 3.5961444501081647

36 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

You can see that we get the same value as the correct answer data ref.txt. Note that do.sh is available as a script
for batch calculation. In do.sh, it also compares the difference between res.txt and ref.txt. Here is what it
does, without further explanation.

sh ./prepare.sh

./bulk.exe

time python3 ../../../src/py2dmat_main.py input.toml | tee log.txt

echo diff res.txt ref.txt
res=0
diff res.txt ref.txt || res=$?
if [$res -eq 0]; then

echo Test PASS
true

else
echo Test FAILED: res.txt and ref.txt differ
false

fi

7.2.5 Visualization of calculation results

The data of the rocking curve at each step is stored in Logxxxxx (where xxxx is the number of steps) as
RockingCurve.txt. A tool draw_RC_double.py is provided to visualize this data. In this section, we will
use this tool to visualize the results.

cp 0/Log00000001/RockingCurve.txt RockingCurve_ini.txt
cp 0/Log00000017/RockingCurve.txt RockingCurve_con.txt
cp ../../../script/draw_RC_double.py .
python draw_RC_double.py

Running the above will output RC_double_minsearch.png.

From the figure, we can see that the last step agrees with the experimental one.

7.3 Grid search

In this section, we will explain how to perform a grid-type search and analyze atomic coordinates from diffraction
data. The grid type search is compatible with MPI. The specific calculation procedure is the same as for minsearch.
However, it is necessary to prepare the data MeshData.txt to give the search grid in advance.

7.3.1 Location of the sample files

The sample files are located in sample/py2dmat/mapper. The following files are stored in the folder

• bulk.txt

Input file of bulk.exe

• experiment.txt , template.txt

Reference file to proceed with calculations in the main program.

7.3. Grid search 37

2DMAT’s Documentation, Release 1.0

Fig. 7.2: Analysis using the Nelder-Mead method. The red circle represents the experimental value, the blue line
represents the first step, and the green line represents the rocking curve obtained at the last step.

38 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

• ref_ColorMap.txt

A file to check if the calculation was performed correctly (the answer to ColorMap.txt obtained by doing
this tutorial).

• input.toml

Input file of the main program.

• prepare.sh , do.sh

Script prepared for bulk calculation of this tutorial.

Below, we will describe these files and then show the actual calculation results.

7.3.2 Reference file

The template.txt and experiment.txt are the same as in the previous tutorial (Nealder-Mead optimization).
However, to reduce the computation time, the value is fixed to 3.5 instead of value_03, and the grid is searched in
2D. The actual grid to be searched is given in MeshData.txt. In the sample, the contents of MeshData.txt are
as follows.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

The first column is the serial number, and the second and subsequent columns are the values of value_0 , value_1
that go into template.txt, in that order.

7.3.3 Input file

This section describes the input file for the main program, input.toml. The details of input.toml can be found
in the input file. The following is the content of input.toml in the sample file.

[base]
dimension = 2

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]

(continues on next page)

7.3. Grid search 39

2DMAT’s Documentation, Release 1.0

(continued from previous page)

path = "experiment.txt"
first = 1
last = 70

[algorithm]
name = "mapper"
label_list = ["z1", "z2"]

First, [base] section is explained.

• The dimension is the number of variables to be optimized, in this case 2 since we are optimizing two variables
as described in template.txt.

The [solver] section specifies the solver to be used inside the main program and its settings.

• The name is the name of the solver you want to use, which in this tutorial is sim-trhepd-rheed, since we
will be using it for our analysis.

The solver can be configured in the subsections [solver.config], [solver.param], and [solver.
reference].

The [solver.config] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The calculated_first_line specifies the first line to read from the output file.

• The calculated_last_line specifies the last line of the output file to be read.

• The row_number specifies the number of columns in the output file to read.

The [solver.param] section specifies options for reading the output file produced by the main program’s internal
call, surf.exe.

• The string_list is a list of variable names to be read in template.txt.

• degree_max specifies the maximum angle in degrees.

The [solver.reference] section specifies the location of the experimental data and the range to read.

• The path specifies the path where the experimental data is located.

• The first specifies the first line of the experimental data file to read.

• The end specifies the last line of the experimental data file to read.

The [algorithm] section specifies the algorithm to use and its settings.

• The name is the name of the algorithm you want to use, in this tutorial we will use mapper since we will be
using grid-search method.

• The label_list is a list of label names to be attached to the output value_0x (x=1,2).

For details on other parameters that can be specified in the input file, please see the Input File chapter.

40 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

7.3.4 Calculation execution

First, move to the folder where the sample files are located (we will assume that you are directly under the directory
where you downloaded this software).

cd sample/py2dmat/minsearch

Copy bulk.exe and surf.exe.

cp ../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

First, run bulk.exe to create bulkP.b.

./bulk.exe

After that, run the main program (the computation time takes only a few seconds on a normal PC).

mpiexec -np 2 python3 ../../../src/py2dmat_main.py input.toml | tee log.txt

Here, the calculation using MPI parallel with 2 processes will be done. When executed, a folder for each rank will be
created, and a subfolder Log%%%%% (where %%%%% is the grid id) will be created under it. (The grid id is assigned to
the number in MeshData.txt). The standard output will be seen like this.

Iteration : 1/33
Read experiment.txt
mesh before: [1.0, 6.0, 6.0]
z1 = 6.00000
z2 = 6.00000
[' 6.00000', ' 6.00000']
PASS : degree in lastline = 7.0
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.04785241875354398
...

The z1 and z2 are the candidate parameters for each mesh and the R-factor at that time. Finally, the R-factor
calculated for all the points on the grid will be output to ColorMap.txt. In this case, the following results will be
obtained.

6.000000 6.000000 0.047852
6.000000 5.750000 0.055011
6.000000 5.500000 0.053190
6.000000 5.250000 0.038905
6.000000 5.000000 0.047674
6.000000 4.750000 0.065919
6.000000 4.500000 0.053675
6.000000 4.250000 0.061261
6.000000 4.000000 0.069351
6.000000 3.750000 0.071868
6.000000 3.500000 0.072739
...

The first and second columns will contain the values of value_01 and value_02, and the third column will
contain the R-factor. Note that do.sh is available as a script for batch calculation. In do.sh, it also compares
the difference between res.txt and ref.txt. Here is what it does, without further explanation.

7.3. Grid search 41

2DMAT’s Documentation, Release 1.0

sh prepare.sh

./bulk.exe

time mpiexec -np 2 python3 ../../../src/py2dmat_main.py input.toml

echo diff ColorMap.txt ref_ColorMap.txt
res=0
diff ColorMap.txt ref_ColorMap.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else
echo TEST FAILED: ColorMap.txt and ref_ColorMap.txt differ
false

fi

7.3.5 Visualization of calculation results

By seeing ColorMap.txt, we can estimate the region where the small parameters of R-factor are located. In
this case, the following command will create a two-dimensional parameter space diagram ColorMapFig.png.

python3 plot_colormap_2d.py

Looking at the generated figure, we can see that it has a minimum value around (5.25, 4.25).

RockingCurve.txt is stored in each subfolder. By using it, you can compare the results with the experimental
values following the procedure in the previous tutorial.

7.4 Optimization by Bayesian Optimization

This tutorial subscribes how to estimate atomic positions from the experimental diffraction data by using Bayesian
optimization (BO). 2DMAT uses PHYSBO for BO.

7.4.1 Sample files

Sample files are available from sample/py2dmat/bayes . This directory includes the following files:

• bulk.txt

The input file of bulk.exe

• experiment.txt , template.txt

Reference files for the main program

• ref_BayesData.txt

Solution file for checking whether the calucation successes or not

• input.toml

The input file of py2dmat

• prepare.sh , do.sh

Script files for running this tutorial

42 Chapter 7. Tutorials

https://www.pasums.issp.u-tokyo.ac.jp/physbo/en

2DMAT’s Documentation, Release 1.0

Fig. 7.3: R-factor on a two-dimensional parameter space.

7.4. Optimization by Bayesian Optimization 43

2DMAT’s Documentation, Release 1.0

In the following, we will subscribe these files and then show the result.

7.4.2 Reference files

This tutorial uses template.txt , experiment.txt similar to the previous one (minsearch). Only difference
is that in this tutorial the third parameter value_03 is fixed to 3.5 in order to speed up the calculation. The parameter
space to be explored is given by MeshData.txt.

1 6.000000 6.000000
2 6.000000 5.750000
3 6.000000 5.500000
4 6.000000 5.250000
5 6.000000 5.000000
6 6.000000 4.750000
7 6.000000 4.500000
8 6.000000 4.250000
9 6.000000 4.000000
...

The first column is the index of the point and the remaining ones are the coodinates, value_0 and value_1 in the
template.txt.

7.4.3 Input files

This subsection describes the input file. For details, see the manual of bayes. input.toml in the sample directory
is shown as the following

[base]
dimension = 2

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

[algorithm]
name = "bayes"
label_list = ["z1", "z2"]

[algorithm.param]
mesh_path = "MeshData.txt"

[algorithm.bayes]

(continues on next page)

44 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

(continued from previous page)

random_max_num_probes = 5
bayes_max_num_probes = 20

• The [base] section describes the settings for a whole calculation.

– dimension is the number of variables you want to optimize. In this case, specify 2 because it optimizes
two variables.

• The [solver] section specifies the solver to use inside the main program and its settings.

– See the minsearch tutorial.

• The [algorithm] section sets the algorithm to use and its settings.

– name is the name of the algorithm you want to use, and in this tutorial we will do a Bayesian optimization
analysis, so specify bayes.

– label_list is a list of label names to be given when outputting the value of value_0x (x = 1,2).

– The [algorithm.bayes] section sets the parameters for Bayesian optimization.

* random_max_num_probes specifies the number of random searches before Bayesian optimiza-
tion.

* bayes_max_num_probes specifies the number of Bayesian searches.

For details on other parameters that can be specified in the input file, see the chapter on input files of bayes.

7.4.4 Calculation

First, move to the folder where the sample file is located (hereinafter, it is assumed that you are the root directory of
2DMAT).

cd sample/py2dmat/bayes

Copy bulk.exe and surf.exe as the tutorial for the direct problem.

cp ../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

Execute bulk.exe to generate bulkP.b .

./bulk.exe

Then, run the main program (it takes a few secondes)

python3 ../../../src/py2dmat_main.py input.toml | tee log.txt

This makes a directory with the name of 0 . The following standard output will be shown:

#parameter
random_max_num_probes = 5
bayes_max_num_probes = 20
score = TS
interval = 5
num_rand_basis = 5000
Read MeshData.txt
value_01 = 4.75000

(continues on next page)

7.4. Optimization by Bayesian Optimization 45

2DMAT’s Documentation, Release 1.0

(continued from previous page)

value_02 = 4.50000
WARNING : degree in lastline = 7.0, but 6.0 expected
PASS : len(calculated_list) 70 == len(convolution_I_calculated_list)70
R-factor = 0.05141906746102885
0001-th step: f(x) = -0.051419 (action=46)

current best f(x) = -0.051419 (best action=46)

value_01 = 6.00000
value_02 = 4.75000
...

A list of hyperparameters, followed by candidate parameters at each step and the corresponding R-factormultiplied
by −1, are shown first. It also outputs the grid index (action) and f(x)with the best R-factor at that time. Under
the directory 0, subdirectories with the name is the grid id are created, like Log%%%%% (%%%%% is the grid id), and
the solver output for each grid is saved. (The first column in MeshData.txt will be assigned as the id of the grid).
The final estimated parameters are output to BayesData.txt.

In this case, BayesData.txt can be seen as the following

#step z1 z2 R-factor z1_action z2_action R-factor_action
0 4.75 4.5 0.05141906746102885 4.75 4.5 0.05141906746102885
1 4.75 4.5 0.05141906746102885 6.0 4.75 0.06591878368102033
2 5.5 4.25 0.04380131351780189 5.5 4.25 0.04380131351780189
3 5.0 4.25 0.02312528177606794 5.0 4.25 0.02312528177606794
4 5.0 4.25 0.02312528177606794 6.0 5.75 0.05501069117756031
5 5.0 4.25 0.02312528177606794 5.0 4.75 0.037158316568603085
6 5.0 4.25 0.02312528177606794 5.75 4.75 0.06061194437867895
7 5.0 4.25 0.02312528177606794 4.25 3.5 0.062098618649988294
8 5.0 4.25 0.02312528177606794 6.0 6.0 0.04785241875354398
9 5.0 4.25 0.02312528177606794 4.5 4.0 0.05912332368374844
10 5.0 4.25 0.02312528177606794 4.75 4.25 0.04646333628698967
11 5.0 4.25 0.02312528177606794 5.5 4.5 0.0466682914488051
12 5.0 4.25 0.02312528177606794 5.0 4.5 0.033464998538380517
13 5.25 4.25 0.015199251773721183 5.25 4.25 0.015199251773721183
14 5.25 4.25 0.015199251773721183 5.25 4.0 0.0475246576904707
...

The first column contains the number of steps, and the second, third, and fourth columns contain `` value_01``, ``
value_02``, and `` R-factor``, which give the highest score at that time. This is followed by the candidate value_01,
value_02 and R-factor for that step. In this case, you can see that the correct solution is obtained at the 13th
step.

In addition, do.sh is prepared as a script for batch calculation. do.sh also checks the difference between
BayesData.dat and ref_BayesData.dat. I will omit the explanation below, but I will post the contents.

sh prepare.sh

./bulk.exe

time python3 ../../../src/py2dmat_main.py input.toml

echo diff BayesData.txt ref_BayesData.txt
res=0
diff BayesData.txt ref_BayesData.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

(continues on next page)

46 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

(continued from previous page)

else
echo TEST FAILED: BayesData.txt.txt and ref_BayesData.txt.txt differ
false

fi

7.4.5 Visualization

You can see at what step the parameter gave the minimum score by looking at BayesData.txt. Since
RockingCurve.txt is stored in a subfolder for each step, it is possible to compare it with the experimental value
by following the procedure of :doc:minsearch.

7.5 Optimization by replica exchange Monte Carlo

This tutorial subscribes how to estimate atomic positions from the experimental diffraction data by using the replica
exchange Monte Carlo method (RXMC).

7.5.1 Sample files

Sample files are available from sample/py2dmat/bayes . This directory includes the following files:

• bulk.txt

The input file of bulk.exe

• experiment.txt , template.txt

Reference files for the main program

• ref.txt

Solution file for checking whether the calucation successes or not

• input.toml

The input file of py2dmat

• prepare.sh , do.sh

Script files for running this tutorial

In the following, we will subscribe these files and then show the result.

7.5.2 Reference files

This tutorial uses reference files, template.txt and experiment.txt, which are the same as the previous
tutorial (Optimization by Nelder-Mead method) uses.

7.5. Optimization by replica exchange Monte Carlo 47

2DMAT’s Documentation, Release 1.0

7.5.3 Input files

This subsection describes the input file. For details, see the manual of bayes. input.toml in the sample directory
is shown as the following

[base]
dimension = 2

[algorithm]
name = "exchange"
label_list = ["z1", "z2"]
seed = 12345

[algorithm.param]
min_list = [3.0, 3.0]
max_list = [6.0, 6.0]

[algorithm.exchange]
numsteps = 1000
numsteps_exchange = 20
Tmin = 0.005
Tmax = 0.05
Tlogspace = true

[solver]
name = "sim-trhepd-rheed"

[solver.config]
calculated_first_line = 5
calculated_last_line = 74
row_number = 2

[solver.param]
string_list = ["value_01", "value_02"]
degree_max = 7.0

[solver.reference]
path = "experiment.txt"
first = 1
last = 70

In the following, we will briefly describe this input file. For details, see the manual of Replica exchange Monte Carlo
exchange.

• The [base] section describes the settings for a whole calculation.

– dimension is the number of variables you want to optimize. In this case, specify 2 because it optimizes
two variables.

• The [solver] section specifies the solver to use inside the main program and its settings.

– See the minsearch tutorial.

• The [algorithm] section sets the algorithm to use and its settings.

– name is the name of the algorithm you want to use, and in this tutorial we will use RXMC, so specify
exchange.

– label_list is a list of label names to be given when outputting the value of value_0x (x = 1,2).

– seed is the seed that a pseudo-random number generator uses.

48 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

– The [algorithm.param] section sets the parameter space to be explored.

* min_list is a lower bound and max_list is an upper bound.

– The [algorithm.exchange] section sets the parameters for RXMC.

* numstep is the number of Monte Carlo steps.

* numsteps_exchange is the number of interval steps between temperature exchanges.

* Tmin, Tmax are the minimum and the maximum of temperature, respectively.

* When Tlogspace is true, the temperature points are distributed uniformly in the logarithmic
space.

• The [solver] section specifies the solver to use inside the main program and its settings.

– See the Optimization by Nelder-Mead method tutorial.

7.5.4 Calculation

First, move to the folder where the sample file is located (hereinafter, it is assumed that you are the root directory of
2DMAT).

cd sample/py2dmat/bayes

Copy bulk.exe and surf.exe as the tutorial for the direct problem.

cp ../../../../sim-trhepd-rheed/src/TRHEPD/bulk.exe .
cp ../../../../sim-trhepd-rheed/src/TRHEPD/surf.exe .

Execute bulk.exe to generate bulkP.b .

./bulk.exe

Then, run the main program (it takes a few secondes)

mpiexec -np 4 python3 ../../../src/py2dmat_main.py input.toml | tee log.txt

Here, the calculation is performed using MPI parallel with 4 processes. (If you are using Open MPI and you request
more processes than you can use, add the --oversubscribed option to the mpiexec command.)

When executed, a folder for each rank will be created, and a trial.txt file containing the parameters evaluated
in each Monte Carlo step and the value of the objective function, and a result.txt file containing the parameters
actually adopted will be created.

These files have the same format: the first column is the number of steps, the second is the temperature, the third
column is the value of the objective function, and the fourth and subsequent columns are the parameters.

step T fx x1 x2
0 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
2 0.004999999999999999 0.07830821484593968 3.682008067401509 3.9502750191292586
3 0.004999999999999999 0.06273922648753057 4.330900869594549 4.311333132184154

In the case of the sim-trhepd-rheed solver, a subfolder Log%%%%% (%%%%% is the number of MC steps) is created
under each working folder, and locking curve information etc. are recorded.

Finally, best_result.txt is filled with information about the parameter with the optimal objective function (R-
factor), the rank from which it was obtained, and the Monte Carlo step.

7.5. Optimization by replica exchange Monte Carlo 49

2DMAT’s Documentation, Release 1.0

nprocs = 4
rank = 2
step = 65
fx = 0.008233957976993406
x[0] = 4.221129370933539
x[1] = 5.139591716517661

In addition, do.sh is prepared as a script for batch calculation. do.sh also checks the difference between
best_result.txt and ref.txt. I will omit the explanation below, but I will post the contents.

sh prepare.sh

./bulk.exe

time mpiexec --oversubscribe -np 4 python3 ../../../src/py2dmat_main.py input.toml

echo diff best_result.txt ref.txt
res=0
diff best_result.txt ref.txt || res=$?
if [$res -eq 0]; then

echo TEST PASS
true

else
echo TEST FAILED: best_result.txt and ref.txt differ
false

fi

7.5.5 Post process

The result.txt in each rank folder records the data sampled by each replica, but the same replica holds samples at
different temperatures because of the temperature exchanges. 2DMat provides a script, script/separateT.py,
that rearranges the results of all replicas into samples by temperature.

python3 ../../../script/separateT.py

The data reorganized for each temperature point is written to result_T%.txt (% is the index of the temperature
point). The first column is the step, the second column is the rank, the third column is the value of the objective
function, and the fourth and subsequent columns are the parameters.

Example:

T = 0.004999999999999999
step rank fx x1 x2
0 0 0.07830821484593968 3.682008067401509 3.9502750191292586
1 0 0.07830821484593968 3.682008067401509 3.9502750191292586
2 0 0.07830821484593968 3.682008067401509 3.9502750191292586

50 Chapter 7. Tutorials

2DMAT’s Documentation, Release 1.0

7.5.6 Visualization

By illustrating result_T.txt, you can estimate regions where the parameters with small R-factor are. In this case,
the figure result.png of the 2D parameter space is created by using the following command.

python3 plot_result_2d.py

Looking at the resulting diagram, we can see that the samples are concentrated near (5.25, 4.25) and (4.25, 5.25), and
that the R-factor value is small there.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
x1

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

x2

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 7.4: Sampled parameters and R-factor. The horizontal axes is value_01 and the vertical axes is value_02
.

Also, RockingCurve.txt is stored in each subfolder. By using this, it is possible to compare with the experimental
value according to the procedure of the previous tutorial.

7.5. Optimization by replica exchange Monte Carlo 51

2DMAT’s Documentation, Release 1.0

52 Chapter 7. Tutorials

CHAPTER

EIGHT

RELATED TOOLS

8.1 to_dft.py

This tool generates input data for Quantum Espresso (QE) , a first-principles electronic structure calculation software,
from the atomic structures of (001) and (111) surface models of systems with Si isotetrahedral bond networks. This
is used to validate the obtained structure and to obtain microscopic information such as the electronic state. In order
to eliminate the influence of dangling bond-derived electrons from the opposite surface of interest, we use a technique
called hydrogen termination, in which a hydrogen atom is placed at the position of the lowest dangling bond.

8.1.1 Prerequisites

• Python3 >= 3.6

The following packages are required:

• Atomic Simulation Environment(ASE) (>= 3.21.1)

• Numpy

• Scipy

• Matplotlib

8.1.2 Overview of this tool

The input file including the information such as the name of the structure file (XYZ format) and the lattice vector
information to represent the two-dimensional periodic structure is read in, and the coordinates of the lowest layer and
the next layer of atoms are extracted from the obtained coordinate data. The bottom layer atoms are removed, and H
atoms are placed at the corresponding positions to create a model with the distance to the next layer atoms adjusted
to a tetrahedral structure (for example, the distance to a silane molecule in the case of Si). The hydrogen-terminated
model is saved in XYZ format, and a cif file and an input file for Quantum Espresso (QE) are also created. If you have
QE installed, you can also run the calculation as is.

53

https://www.quantum-espresso.org/
https://wiki.fysik.dtu.dk/ase

2DMAT’s Documentation, Release 1.0

8.1.3 Tutorial

1. Prepare an XYZ file for reference.

In the following, we will use the file surf_bulk_new111.xyz in the folder tool/todft/sample/111. The
contents of the file are as follows.

12
surf.txt / bulk.txt
Si 1.219476 0.000000 4.264930
Si 6.459844 0.000000 4.987850
Si 1.800417 1.919830 3.404650
Si 5.878903 1.919830 3.404650
Si 3.839660 1.919830 2.155740
Si 0.000000 1.919830 1.900440
Si 3.839660 0.000000 0.743910
Si 0.000000 0.000000 0.597210
Si 1.919830 0.000000 -0.678750
Si 5.759490 0.000000 -0.678750
Si 1.919830 1.919830 -2.036250
Si 5.759490 1.919830 -2.036250

2. Next, create an input file for setting the various parameters.

The file format of the input file is toml. The following section describes the contents of the input file using input.
toml in the tool/todft/sample/111 folder. The contents of the file are as follows.

[Main]
input_xyz_file = "surf_bulk_new111.xyz"
output_file_head = "surf_bulk_new111_ext"
[Main.param]
z_margin = 0.001
slab_margin = 10.0
r_SiH = 1.48 #angstrom
theta = 109.5 #H-Si-H angle in degree
[Main.lattice]
unit_vec = [[7.67932, 0.00000, 0.00000], [0.00000, 3.83966, 0.00000]]
[ASE]
solver_name = "qe"
kpts = [3,3,1] # sampling k points (Monkhorst-Pack grid)
command = "mpirun -np 4 ./pw.x -in espresso.pwi > espresso.pwo"
[Solver]
[Solver.control]
calculation='bands' # 'scf','realx','bands',...
pseudo_dir='./' # Pseudopotential directory
[Solver.system]
ecutwfc = 20.0 # Cut-off energy in Ry
nbands=33 # # of bands (only used in band structure calc
[Solver.pseudo]
Si = 'Si.pbe-mt_fhi.UPF'
H = 'H.pbe-mt_fhi.UPF'

The input file consists of three sections: Main, ASE, and Solver. Below is a brief description of the variables for
each section.

54 Chapter 8. Related Tools

2DMAT’s Documentation, Release 1.0

Main section

This section contains settings related to the parameters required for hydrogen termination.

• input_xyz_file

Format: string

Description: Name of the xyz file to input

• output_file_head

Format: string

Description: Header for output files (xyz and cif files)

Main.Param section

• z_margin

Format: float

Description: Margin used to extract the lowest and second-to-last atoms. For example, if the z-coordinate of the
atom in the bottom layer is z_min, the atoms in z_min - z_margin <= z <= z_min + z_margin
will be extracted.

• slab_margin

Format: float

Description: Margin for tuning the size of the slab. If the z-coordinates of the atoms in the bottom and top layers
are z_min , z_max, then the slab size is given by z_max-z_min+slab_margin.

• r_SiH

Format: float

Description: The distance (in Å) between a vertex (e.g. Si) and H of a tetrahedral structure.

• theta

Format: float

Description: The angle between the vertex and H of the tetrahedral structure (e.g. Si-H-Si).

Main.lattice section

• unit_vec

Format: list

Description: Specify a unit vector that forms a 2D plane (ex. unit_vec = [[7.67932, 0.00000, 0.
00000], [0.00000, 3.83966, 0.00000]]).

8.1. to_dft.py 55

2DMAT’s Documentation, Release 1.0

ASE section

This section specifies parameters related to ASE.

• solver_name

Format: string

Description: The name of the solver. Currently, only qe is given.

• kpts

Format: list

Description: Specify the k-points to be sampled (Monkhorst-Pack grid).

• command

Format: string

Description: Set the command used to run the solver.

Solver section

In this section, parameters related to Solver are specified. You will need to specify this if you want to perform
first-principles calculations directly using ASE. Basically, the configuration is the same as the one specified in the
input file of each solver. For example, in the case of QE, Solver.control contains the parameters to be set in the
control section of QE.

3. Execute the following command.

python3 to_dft.py input.toml

After finishing calculations, the following files are generated:

• surf_bulk_new111_ext.xyz

• surf_bulk_new111_ext.cif

• espresso.pwi

If the path to the QE and pseudopotential is set in the input file, the first-principle calculation will be performed
as is. If not, the ab initio calculation will not be performed and you will get the message Calculation of
get_potential_energy is not normally finished. at the end, but the above file will still be output.

The following is a description of the output file.

• surf_bulk_new111_ext.xyz

The output is the result of the replacement of the lowest level atom with H and the addition of H to form a tetrahedral
structure. The actual output is as follows.

14
Lattice="7.67932 0.0 0.0 0.0 3.83966 0.0 0.0 0.0 17.0241"
→˓Properties=species:S:1:pos:R:3 pbc="T T T"
Si 1.219476 0.000000 4.264930
Si 6.459844 0.000000 4.987850
Si 1.800417 1.919830 3.404650
Si 5.878903 1.919830 3.404650
Si 3.839660 1.919830 2.155740
Si 0.000000 1.919830 1.900440
Si 3.839660 0.000000 0.743910

(continues on next page)

56 Chapter 8. Related Tools

2DMAT’s Documentation, Release 1.0

(continued from previous page)

Si 0.000000 0.000000 0.597210
Si 1.919830 0.000000 -0.678750
Si 5.759490 0.000000 -0.678750
H 1.919830 -1.208630 -1.532925
H 1.919830 1.208630 -1.532925
H 5.759490 -1.208630 -1.532925
H 5.759490 1.208630 -1.532925

This file can be read by appropriate visualization software as ordinary XYZFormat coordinate data, but the lattice
vector information of the periodic structure is written in the place where comments are usually written. You can also
copy the data of “element name + 3D coordinate” from the third line of the output file to the input file of QE.

espresso.pwi is the input file for QE’s scf calculation, and structural optimization and band calculation can be
done by modifying this file accordingly. For details, please refer to the QE online manual .

8.1. to_dft.py 57

https://www.quantum-espresso.org/Doc/INPUT_PW.html

2DMAT’s Documentation, Release 1.0

58 Chapter 8. Related Tools

CHAPTER

NINE

(FOR DEVELOPERS) USER-DEFINED ALGORITHM AND SOLVER

py2dmat solves the reverse problem by combination of Solver for the direct problem and Algorithm for the
optimization problem. Instead of some Solver and Algorithm which are served by py2dmat, users can define
and use their own components. In this chapter, how to define Solver and Algorithm and to use them will be
described.

9.1 Commons

9.1.1 py2dmat.Info

This class treats the input parameters. This has the following four instance variables.

• base : dict[str, Any]

– Parameters for whole program such as the directory where the output will be written.

• solver : dict[str, Any]

– Parameters for Solver

• algorithm : dict[str, Any]

– Parameters for Algorithm

• runner : dict[str, Any]

– Parameters for Runner

An instance of Info is initialized by passing a dict which has the following four sub dictionaries, "base",
"solver", "algorithm", and "runner". Each value will be set to the corresponding field of Info.

• About base

– Root directory root_dir

* The default value is "." (the current directory).

* Value of root_dir will be converted to an absolute path.

* The leading ~ will be expanded to the user’s home directory.

* Specifically, the following code is executed

p = pathlib.Path(base.get("root_dir", "."))
base["root_dir"] = p.expanduser().absolute()

– Output directory output_dir

59

2DMAT’s Documentation, Release 1.0

* The default value is ".", that is, the same to root_dir

* The leading ~ will be expanded to the user’s home directory.

* If a relative path is given, its origin is root_dir.

* Specifically, the following code is executed

p = pathlib.Path(base.get("work_dir", "."))
p = p.expanduser()
base["work_dir"] = base["root_dir"] / p

9.1.2 py2dmat.Message

When Algorithm tries to invoke Solver, an instance of this class is passed from Algorithm to Solver via
Runner.

This has the following three instance variables.

• x: np.ndarray

– Coordinates of a point 𝑥 to calculate 𝑓(𝑥)

• step: int

– The index of parameters

– For example, the index of steps in exchange and the ID of parameter in mapper.

• set: int

– Which lap it is

– For example, min_search has two laps, the first one is optimization and the second one is recalculation
the optimal values for each step.

9.1.3 py2dmat.Runner

Runner connects Algorithm and Solver. The constructor of Runner takes Solver and Info.

submit(self, message: py2dmat.Message) -> float method invokes the solver and returns the re-
sult. To evaluate fx = f(x), use the following code snippet:

message = py2dmat.Message(x, step, set)
fx = runner.submit(message)

9.2 Solver

Solver is defined as a subclass of py2dmat.solver.SolverBase

import py2dmat

class Solver(py2dmat.solver.SolverBase):
...

The following methods should be defined.

• __init__(self, info: py2dmat.Info)

60 Chapter 9. (For developers) User-defined algorithm and solver

2DMAT’s Documentation, Release 1.0

– It is required to call the constructor of the base class.

* super().__init__(info)

– The constructor of SolverBase defines the following instance variables.

* self.root_dir: pathlib.Path : Root directory

· use info.base["root_dir"]

* self.output_dir: pathlib.Path : Output directory

· use info.base["output_dir"]

* self.proc_dir: pathlib.Path : Working directory for each MPI process

· as self.output_dir / str(mpirank)

* self.work_dir: pathlib.Path : Directory where the solver is invoked

· same to self.proc_dir

– Read the input parameter info and save as instance variables.

• default_run_scheme(self) -> str

– Returns the default method to invoke the solver.

– The followings are available:

* subprocess : run as a process via subprocess.run

* function : run as a python function

– In future, we plans to make a Solver support multiple way to invoke.

• prepare(self, message: py2dmat.Message) -> None

– This is called before the solver starts

– message includes an input parameter x, convert it to something to be used by the solver

* e.g., to generate an input file of the solver

• get_results(self) -> float

– This is called after the solver finishes

– Returns the result of the solver

* e.g., to retrieve the result from the output file of the solver

One of the following two method should be defined:

• command(self) -> List[str]

– Returns a command to invoke the solver

– The return value will be transferred to subprocess.run

– This method is nessesary when default_run_scheme returns "subprocess"

• function(self) -> Callable[[], None]

– Returns a python function to invoke the solver

– The return value (function) will be called immediately.

– This method is nessesary when default_run_scheme returns "function"

9.2. Solver 61

2DMAT’s Documentation, Release 1.0

9.3 Algorithm

Algorithm is defined as a subclass of py2dmat.algorithm.AlgorithmBase

import py2dmat

class Algorithm(py2dmat.algorithm.AlgorithmBase):
...

9.3.1 AlgorithmBase

AlgorithmBase class offers the following methods

- ``__init__(self, info: py2dmat.Info, runner: py2dmat.Runner = None)``

• Reads the common parameters from info and sets the following instance variables:

– self.mpicomm: Optional[MPI.Comm] : MPI.COMM_WORLD

* When import mpi4py fails, this will be None.

– self.mpisize: int : the number of MPI processes

* When import mpi4py fails, this will be 1.

– self.mpirank: int : the rank of this process

* When import mpi4py fails, this will be 0.

– self.rng: np.random.Generator : pseudo random number generator

* For details of the seed, please see the [algorithm] section of the input parameter

– self.dimension: int : the dimension of the parameter space

– self.label_list: List[str] : the name of each axes of the parameter space

– self.root_dir: pathlib.Path : root directory

* info.base["root_dir"]

– self.output_dir: pathlib.Path : output directory

* info.base["root_dir"]

– self.proc_dir: pathlib.Path : working directory of each process

* self.output_dir / str(self.mpirank)

* Directory will be made automatically

* Each process performs an optimization algorithm in this directory

– self.timer: dict[str, dict] : dictionary storing elapsed time

* Three empty dictinaries, "prepare", "run", and "post" will be defined

• prepare(self) -> None

– Prepares the algorithm

– It should be called before self.run() is called

– It calls self._prepare()

62 Chapter 9. (For developers) User-defined algorithm and solver

2DMAT’s Documentation, Release 1.0

• run(self) -> None

– Performs the algorithm

– Enters into self.proc_dir, calls self._run(), and returns to the original directory.

• post(self) -> None

– Runs a post process of the algorithm, for example, write the result into files

– It should be called after self.run() is called

– Enters into self.output_dir, calls self._post(), and returns to the original directory.

• main(self) -> None

– Calls prepare, run, and post

– Measures the elapsed times for calling each function, and write them into file

• _read_param(self, info: py2dmat.Info) -> Tuple[np.ndarray, np.ndarray,
np.ndarray, np.ndarray]

– Helper method for initializing defining the continuous parameter space

– Reads info.algorithm["param"] and returns the followings:

* Initial value

* Lower bound

* Upper bound

* Unit

– For details, see [algorithm.param] subsection for minsearch

• _meshgrid(self, info: py2dmat.Info, split: bool = False) -> Tuple[np.
ndarray, np.ndarray]

– Helper method for initializing defining the discrete parameter space

– Reads info.algorithm["param"] and returns the followings:

* N points in the D dimensinal space as a NxD matrix

* IDs of points as a N dimensional vector

– If split is True, the set of points is scatterred to MPI processes

– For details, see [algorithm.param] subsection for mapper

9.3.2 Algorithm

In Algorithm, the following methods should be defined:

• __init__(self, info: py2dmat.Info, runner: py2dmat.Runner = None)

– Please transfer the arguments to the constructor of the base class:

* super().__init__(info=info, runner=runner)

– Reads info and sets information

• _prepare(self) -> None

– Pre process

• _run(self) -> None

9.3. Algorithm 63

2DMAT’s Documentation, Release 1.0

– The algorithm itself

– In this method, you can calculate f(x) from a parameter x as the following:

message = py2dmat.Message(x, step, set)
fx = self.runner.submit(message)

• _post(self) -> None

– Post process

9.4 Usage

The following flow solves the optimization problem. The number of flow corresponds the comment in the program
example.

1. Define your Algorithm and/or Solver

• Of course, classes that py2dmat defines are available

2. Prepare the input parameter, info: py2dmat.Info

• Make a dictionary as your favorite way

– The below example uses a TOML formatted input file for generating a dictionary

3. Instantiate solver: Solver, runner: py2dmat.Runner, and algorithm: Algorithm

4. Invoke algorithm.main()

Example:

import sys
import toml
import py2dmat

(1)
class Solver(py2dmat.solver.SolverBase):

Define your solver
...

class Algorithm(py2dmat.algorithm.AlgorithmBase):
Define your algorithm
...

file_name = sys.argv[1]

(2)
info = py2dmat.Info(toml.load(file_name))

(3)
solver = Solver(info)
runner = py2dmat.Runner(solver, info)
algorithm = Algorithm(info, runner)

(4)
algorithm.main()

64 Chapter 9. (For developers) User-defined algorithm and solver

CHAPTER

TEN

ACKNOWLEDGEMENTS

The development of 2DMAT was supported by JSPS KAKENHI Grant Number 19H04125 “Unification of computa-
tional statistics and measurement technology by massively parallel machine” and “Project for advancement of software
usability in materials science” of The Institute for Solid State Physics, The University of Tokyo.

65

2DMAT’s Documentation, Release 1.0

66 Chapter 10. Acknowledgements

CHAPTER

ELEVEN

CONTACT

• Bug Reports

Please report all problems and bugs on the github Issues page.

To resolve bugs early, follow these guidelines when reporting:

1. Please specify the version of 2DMAT you are using.

2. If there are problems for installation, please inform us about your operating system and the compiler.

3. If a problem occurs during execution, enter the input file used for execution and its output.

Thank you for your cooperation.

• Others

If you have any questions about your research that are difficult to consult at Issues on GitHub, please send an
e-mail to the following address:

E-mail: 2dmat-dev__at__issp.u-tokyo.ac.jp (replace _at_ by @)

67

https://github.com/issp-center-dev/2DMAT/releases

	Introduction
	What is 2DMAT ?
	License
	Version Information
	Main developers

	Install of py2dmat
	Prerequisites
	How to download and install
	How to run
	How to uninstall

	Input file
	[base] section
	[solver] section
	[algorithm] section
	[runner] section

	Output files
	Common file

	Direct Problem Solver
	analytical solver
	sim-trhepd-rheed solver

	Search algorithms
	Nelder-Mead method minsearch
	Direct parallel search mapper
	Bayse optimization bayes
	Replica exchange Monte Carlo exchange

	Tutorials
	TRHEPD Direct Problem Solver
	Optimization by Nelder-Mead method
	Grid search
	Optimization by Bayesian Optimization
	Optimization by replica exchange Monte Carlo

	Related Tools
	to_dft.py

	(For developers) User-defined algorithm and solver
	Commons
	Solver
	Algorithm
	Usage

	Acknowledgements
	Contact

