2020年度第1回物性アプリオープンフォーラム 2020/6/24(水) 16:00-17:00

強磁性物質データベースの構築

物性研 福島グループ

櫻井誠大 (Masahiro Sakurai) sakurai@issp.u-tokyo.ac.jp

2015年4月-2020年3月 米国 テキサス大 ポスドク*

- 第一原理計算
 - 磁性クラスター(実空間 DFT)
 - 結晶磁気異方性(平面波 DFT)

- バンドギャップ(GW法)、光吸収スペクトル(GW+BSE法)

- ・強磁性体データベース
 - 機械学習向け基礎データ
- * supported by the National Science Foundation (NSF)

Contents

NSF-DMREF project

Three collaborative teams* (theory & experiment)

Magnetic Materials Database

Data collection (known crystal structures)

Data generation (new structures & first-principles calculations)

Data organization (server applications, scripts, ...)

Unique features

Preliminary results

*Most recent paper:

B. Bala., M. Sakurai, C.-Z. Wang, X. Xu, K.-M.Ho, J. R. Chelikowsky, and D. J. Sellmyer: "Synergistic Computational and Experimental Discovery of Novel Magnetic Materials" Molecular Systems Design & Engineering, 5, 1098-1117 (2020). https://doi.org/10.1039/D0ME00050G NSF-DMREF project (2014–2017–2020)

"Collaborative Research

for the Design and Synthesis of Novel Magnetic Materials"

The University of Texas at Austin [Theory]

James R. Chelikowsky

Iowa State University (Ames Lab.) [Theory]

Kai-Ming Ho Cai-Zhuang Wang

University of Nebraska–Lincoln [Experiment]

David J. Sellmyer Xiaoshan Xu

RE-free magnetic materials

high magnetization (M_s) high magnetic anisotropy (K)high Curie temperature (T_c)

Methods

DFT (PARSEC, QE, VASP) Adaptive genetic algorithm LMTO-ASA-GF "Non-equilibrium" synthesis

Joint work

joint papers monthly Skype meeting

DMREF: Designing Materials to Revolutionize and Engineer our Future

Permanent magnet materials

Permanent magnet

Key properties:

(i) Saturation magnetization J_S

(ii) Coercivity H_c (~ magnetic anisotropy K_1)

(iii) Curie temperature T_C

解説記事 「磁石の秘密」 赤井久純 日本物理学会誌 **71** (2016) 277-281.

> 母物質(固有特性) 材料(界面、欠陥) 磁石(焼結)

These rely strongly on rare-earth elements (Nd, Sm, Dy, ...) ← *potential supply risk!*

Theoretical approach

pseudopotential DFT plus machine-learning techniqueBasic inputs:Site-specific quantities:Key properties:Composition: $A_x B_y C_z$ Site-specific quantities:Key properties:Space group (symmetry)Magnetic moments: m_j J_S Lattice parameters: a, b, c \rightarrow Spin-orbit coupling: E_{soc} \rightarrow Atomic positions: $\{r_i\}$ T_C

New materials with desired properties

Magnetic Materials Database at https://magmatdb.herokuapp.com

 Magneti Database Phase dia 	https://ma c Materials statistics grams of	gmatdb.her s Databas s: a total o binary pl	okuapp.com se Home of 3,826 ent hases: Fe–I	About Clu ries, including N (34 structur	ster Diagr g 300+ Fe- es), Fe-Si,	ams Statist based <i>rare-</i> (Fe–S, Co–N	ics Novo earth-free I (183 stru	Mag project magnets o ctures), Zr	discovered th	nrough ctures	our ge	enetic	algori	ithm (GA)	ල් searches] ★ 自	+ ¢
Displaying 10	entries out o	of a total of a	3,826 entries.	-Co-N (259 ST	Stability [F	Elements randc	m selection:	es), Zr-Co Co-N (183 en Magnetic I	Searc	h)	magne	es), tic unit	sl				References
Materials ID	Formula	Formula units per cell	Crystal system	Space group [Number]	Formation energy (eV/atom)	Energy relative to convex hull (eV/atom)	Synthesis	Averaged magnetic moment (µ _B /atom)	Magnetic polarization, J (T)	Magne consta K ^{a-c} , k (MJ/m	etic anis ants (^{b-c} , K ^{b-}	a, K ^{d-a}	-1	Magnetic easy axis	Curie temperature, T _C (K)	Methods	References
MMD-1	Fe	2	cubic	Im-3m [229]	0.000	0 (stable)	bcc Fe	2.23	2.18	0.00	0.00	0.00	0.01	а	953.2	DFT	mp-13
MMD-2	Со	2	hexagonal	P6_3/mmc [194]	0.000	0 (stable)	hcp Co	1.61	1.72	0.22	0.22	0.00	•	С	1474.2	DFT	mp-54
MMD-3	Ni	4	cubic	Fm-3m [225]	0.000	0 (stable)	fcc Ni	0.65	0.68	0.00	0.00	0.00	0.00	a	401.8	DFT	mp-23
MMD-4	FeCo ₅ N ₂	2	monoclinic	C2 [5]	0.040	0.073	GA search	0.80	0.95	-0.29	-0.34	-0.05		b	255	DFT	DOI link
Fo	ID ormu	ula Space group Formation energy					Key magnetic properties: (1) magnetic moments (2) magnetic anisotropy energy					Me Refe	thods erence				

(3) Curie temperature

Search filters: elements, formula, space group, easy axis, ...

Available files: CIF, POSCAR, LAMMPS, JSON, YAML

Open-access Materials Database	[1] Materials Project	[2] Open Quantum Materials Database	[3] Magnetic Materials Database	[4] Topological Material Database		
Team	UC Berkeley	Northwestern University	Texas, Iowa, Nebraska	Europe		
Materials data						
# of entries	124,515	637,644	3,826	24,825		
crystallography	\checkmark	\checkmark	v	v		
phase stability	\checkmark	\checkmark	v	_		
Magnetism data						
magnetic moment	v	_	 	_		
magnetic anisotropy	—	—	~	—		
Curie temperature	_	_	~	_		
Topological data						
Z indices, etc.	_	_	_	v		

[1] https://materialsproject.org[2] http://oqmd.org

[3] https://magmatdb.herokuapp.com[4] https://www.topologicalquantumchemistry.org

Elements and Stats

		Ex	plore M	Aateria	Is	Ad	dvanced	Search S	Syntax								
¹ H		Na-O × search									² He						
³ Li	⁴ Be	https://materialsproject.org/									10 Ne						
11 Na	12 Mg		13 14 15 16 17 Al Si P S C							17 Cl	18 Ar						
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 K I
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57-71 La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89-103 Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	106 Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds	¹¹¹ Rg	¹¹² Cn						
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 LT	

 $\mathbf{M} = \mathbf{Mn}, \mathbf{Fe}, \mathbf{Co}, \mathbf{Ni}$

 $X = B, C, N, \bigoplus;$ Al, Si, P, S; Ga, Ge, As, Se

X = Ti, V, Cr, Cu, Zn; Y, Zr, Nb, Mo; Pt

https://magmatdb.herokuapp.com/stats

Adaptive Genetic Algorithm (AGA)

How AGA works:

Step 1: initial seeds

- Step 2: relax with classical potentials $\phi(r)$ sort by energy ("rough guess")
- Step 3: refine with DFT ("adaptive") update classical potentials
- Step 4: new generation

lowest 2 structures: Energy *E*, Forces $\{F_i\}$, Stress $\underline{S} \rightarrow \phi^{\text{new}}(r)$

Pseudopotential DFT

Magnetization & formation energy

Spin-polarized calculations: $\rho_{up} - \rho_{dn} \rightarrow \text{moments}$, magnetization Magnetic anisotropy energy (constant)

$$\begin{array}{c} E(z) & E(x) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

 $E_{A} = K_{1}V\sin^{2}\theta + K_{2}V\sin^{4}\theta + \dots = E_{tot}(x) - E_{tot}(z) \quad [\sim 1-10 \text{ meV per formula unit}]$ $K_{1} = E_{A}/V \quad [\sim 1-10 \text{ MJ/m}^{3}]$

Curie temperature T_C

Linear muffin-tin method (LMTO) Green's function (GF) approach

J. Appl. Phys. <u>85</u>, 4827 (1999)

QUESTALL (M. van Schilfgaarde) https://www.questaal.org/

End user:	page request	Web server:	find data	Database server:		
Web browser	\rightarrow	Flask, Jinja	\rightarrow	MongoDB cloud		
	HTML response	template files	get data	MMD-1.cif		
Command line	1	MMD-1.yaml MMD-2.yaml MMD-3.yaml				

Software	Role	URL				
Database						
MongoDB	Database cloud	www.mongodb.com				
Flask, Jinja	Web applications	palletsprojects.com/p/flask				
Data entries						
Pymatgen	Crystallographic data (CIF) Computed data (YAML)	pymatgen.org				
Adaptive GA	Crystal structure search	doi.org/10.1088/0953-8984/26/3/035402				
Materials Project	Known structures	materialsproject.org				
First-principles calcu	lations					
QE, VASP	DFT for ΔE_{hull} , M_S , and K_1	quantum-espresso.org + vasp				
PARSEC	DFT for clusters	real-space.org				
Qustaal	LMTO-GF for $T_{\rm C}$ and J_{ij}	questaal.org				

Data structure

```
- '@class': ComputedStructureEntry
                                                           ← bcc_Fe.yaml
  '@module': pymatgen.entries.computed_entries
  composition: !!python/object/apply:collections.defaultdict
        dictitems: {Fe: 2.0}
  data:
    critical_temperature:
        Curie_temperature: {unit: K, value: 953.2}
    formation_energy:
         above_hull: {unit: meV/atom, value: 0.0}
         decomposition: {unit: meV/atom, value: 0.0}
    magnetic_anisotropy:
         constant: {a-c: null, b-a: null, b-c: null, d-a: 0.009, unit: MJ/m^3}
         easy_axis: a
         energy: {a-c: null, b-a: null, b-c: null, d-a: 0.001, unit: meV/cell}
         parameters:
             kappa: 0.049
             kgrid: [22, 22, 22]
    magnetic_moment:
        magnetic_polarization: {unit: Tesla, value: 2.18}
        ordering: Ferromagnetic
        total_magnetic_moment: {unit: Bohr_magneton/atom, value: 2.21}
```

Data structure (continued)

Metastable structures from AGA search

"Prediction" from site-specific data

Fe-Co-N (259 structures)

Data-driven approaches for new magnets

Targets:

Concerns:

f-electron

(i) Nd–Fe–B, Sm–Fe–N

(ii) rare-earth-lean

(iii) rare-earth-free: Fe-Co-X, Fe-Mn-X, ...

poor properties? massive calculations?