mollerチュートリアル

CCMSハンズオン: moller講習会 2024年10月18日 @物性研A614+Zoom 東京大学物性研究所 附属物質設計評価施設 ソフトウェア開発・高度化チーム

チュートリアル

- ▶ mollerのサンプルは物性研データリポジトリにあります。
 - Moller Gallery https://datarepo.mdcl.issp.u-tokyo.ac.jp/repo/38
 - ▶ ダウンロード方法

\$ git clone https://isspns-gitlab.issp.u-tokyo.ac.jp/htp-tools-dev/moller-gallery.git

- ▶ 今回のチュートリアルのサンプルファイルは物性研システムBに 置いてあります。
 - /home/issp/materiapps/oneapi_compiler_classic-2023.0.0-openmpi-4.1.5/moller/moller-gallery/ (実際は1行)
- ▶ 実行手順は各チュートリアルの README を参照してください。

チュートリアル一覧

- 1. moller/simple
 - ▶ mollerのシンプルな実行例
- 2. moller/dsqss/AFH-chain
 - ► DSQSS (量子モンテカルロ法)を用いた反強磁性Heisenberg鎖の計算
- 3. moller/hphi/AFH-chain
 - ► HΦ (厳密対角化) を用いた反強磁性Heisenberg鎖の計算
- 4. moller+cif2x/Basic_usage/kpoints
 - ▶ QE 計算における K点数依存性の評価
- 5. moller+cif2x/Basic_usage/cutoff_energy
 - ▶ OpenMX 計算におけるカットオフ依存性の評価

Appendix 1. クラスター計算機で実行するには

Appendix 2. cif2x のインストール

- ▶ 内容
 - ▶ "hello world." を書き込んだファイル result.txt を作成する。
 - ▶ result.txt に "hello world again." を追記する。
 - ▶ 出力先は dataset-0001/ ~ dataset-0020/

- ▶ サンプルファイル
 - ► input.yaml
 - ▶ moller の入力ファイル。実行プラットフォーム、実行内容などを記述。
 - make_inputs.sh
 - データディレクトリ dataset-0001 ~ dataset-0020 と、リストファイ ル list.dat を作成する。

▶ 入力ファイルの例

name: testjob	jobs:
description: Sample task file	hello:
	description: hello world
platform:	node: [1,1]
system: ohtaka	run:
queue: i8cpu	echo "hello world." > result.txt
node: 1	
elapsed: 00:10:00	hello_again:
	description: hello world again
prologue:	node: [1,1]
code:	run:
source /home/issp/materiapps/	echo "hello world again." >> result.txt
oneapi_compiler_classic-2023.0.0	
openmpi-4.1.5/parallel/	
parallelvars-20210622-1.sh	

- ▶ 実行例
 - moller をセットアップする

\$ source /home/issp/materiapps/oneapi_compiler_classic-2023.0.0-openmpi-4.1.5/moller/mollervars.sh

▶ 入力ファイル input.yaml からジョブスクリプト job.sh を作成する

\$ moller -o job.sh input.yaml

▶ 出力先ディレクトリと list.dat を作成する

\$ sh make_inputs.sh

- ▶ 実行例
 - バッチジョブを投入する

\$ sbatch job.sh list.dat

- ▶ リストファイルを省略した場合はデフォルト値 (list.dat) が使われる
- ▶ 実行状況を確認する

\$ squeue

\$ moller_status input.yaml list.dat

- ▶ 実行例
 - ▶ dataset-0001/ ~ dataset-0020/ に result.txt が作成され、

hello world. hello world again.

が書き込まれていれば OK。

```
$ moller_status input.yaml list.dat
            | hello | hello again
 job
  _____| _____ | ______ | ______
dataset-0001 | o
                     | dataset-0002 | o
                    | dataset-0003 | o
                     dataset-0004 | o
                     dataset-0005 | o
                     dataset-0020 | o
```

- ▶ 内容
 - 量子多体問題の経路積分モンテカルロ法ソフトウェア DSQSS を用いて、
 反強磁性ハイゼンベルク鎖の磁気感受率の温度依存性を計算する
 - ▶ 異なるパラメータ M, L, T の計算を並列に実行する

• 15 • .	のパラメータに対する計算 入力ファイル例 ・ job.sh (右図) ・ std.toml (下図) 実行例 \$ sbatch job.sh		<pre>#!/bin/sh #SBATCH -p i8cpu #SBATCH -N 1 #SBATCH -n 8 #SBATCH -t 00:30:00 source /home/issp/m oneapi_compiler_class openmpi-4.1.5/dsqss/ dla_pre std.toml srun dla param.in</pre>	ateriapps/ sic-2023.0.0 /dsqssvars.sh
	[hamiltonian] model – "enin"	[lattice]	"hyporoubio"	[parameter]
	M = 1	dim = 1		nset = 10 ntherm = 1000
	Jz = -1.0	L = 8		ndecor = 1000
	Jxy = -1.0	bc = tru	le	nmcs = 10000
	h = 0.0			wvfile = "wv.xml"
				dispfile = "disp.xml"
				beta = 0.5

- ▶ moller による一括計算
 - ▶ M, L, T を変えたパラメータセットを作成する

\$ bash make_inputs.sh

▶ moller でジョブスクリプトを作成する

\$ moller -o job.sh input.yaml

▶ バッチジョブを投入する

\$ sbatch job.sh list.dat

▶ 結果を集計してプロットする

▶ 実行例

3. moller/hphi/AFH-chain

- ▶ 内容
 - ・量子格子模型を厳密対角化法により解くソフトウェア HΦを用いて、反強磁 性ハイゼンベルク鎖の励起ギャップΔのシステムサイズ依存性を計算する
 - ▶ 異なるパラメータ L の計算を並列に実行する

3. moller/hphi/AFH-chain

▶ 実行手順

1. データセットを作成する

\$ bash ./make_inputs.sh

2. moller を使ってジョブスクリプトを作成する

\$ moller -o job.sh input.yaml

3. バッチジョブを実行する

\$ sbatch job.sh list.dat

4. 実行状況を確認する

\$ moller_status input.yaml list.dat

5. 結果を集計してプロットする

\$ bash ./extract_gap.sh
\$ gnuplot --persist gap.plt

3. moller/hphi/AFH-chain

▶ 実行例

- ▶ 内容
 - ▶ Quantum ESPRESSO (QE) を用いた計算における k点数依存性を評価す る
 - ▶ cif2x により、入力ファイル input_cif2x.yaml から QE の入力ファイルを 作成する
 - ▶ moller を用いて、異なる kpoints パラメータの計算を並列に実行する

▶ 実行手順

0. 擬ポテンシャルファイルを取得する

\$ cd pseudo

\$ sh fetch-pseudo.sh

擬ポテンシャルのテーブルを cif2x のパッケージからコピーする

\$ cp cif2x/sample/cif2x/qe/pseudo/*.csv .

- ▶ 実行手順
 - cif2x を使って QE の入力ファイルの雛形 scf.in を作成 \$ cif2x -t QE input_cif2x.yaml mp-126_Pt.cif
 - 2. K点数の範囲 kpoints.txt とリストファイル list.dat を作成

3 10 1 kpoint_3 kpoint_4 ...

3. moller を使ってジョブスクリプトを作成

\$ moller -o job.sh input_moller.yaml

4. バッチジョブを投入

\$ sbatch job.sh list.dat

5. 結果(utot_values.txt)をプロット

▶ 実行例

5. moller+cif2x/cutoff_energy

- ▶ 内容
 - ▶ OpenMX を用いた計算における cutoff パラメータ依存性を評価する
 - ▶ cif2x により、入力ファイル input_cif2x.yaml から OpenMX の入力ファ イルを作成する
 - ▶ moller を用いて、異なる cutoff パラメータの計算を並列に実行する

5. moller+cif2x/cutoff_energy

▶ 実行手順

- cif2x を使って OpenMX の入力ファイルの雛形 Pt.dat を作成 \$ cif2x -t openmx input_cif2x.yaml mp-126_Pt.cif
- 2. カットオフの範囲 cutoff.txt とリストファイル list.dat を作成

200 700 50 cutoff_200 cutoff_250

3. moller を使ってジョブスクリプトを作成

\$ moller -o job.sh input_moller.yaml

4. バッチジョブを投入

\$ sbatch job.sh list.dat

5. 結果(utot_values.txt)をプロット

5. moller+cif2x/cutoff_energy

▶ 実行例

クラスター計算機で実行するには

- ▶ PBS系のジョブスケジューラ(torqueなど)を使っている場合 (intel mpi)
 - ▶ 入力ファイルの platform セクションの指定:

platform:	
systen	n: pbs
core:	[ノードあたりのコア数]

cif2xのインストール

- ▶ moller+cif2x を ohtaka で使う手順
 - ▶ Python環境と moller をセットアップする

\$ source /home/issp/materiapps/oneapi_compiler_classic-2023.0.0-openmpi-4.1.5/moller/mollervars.sh

仮想環境を用意する

\$ python3 -m venv venv

\$ source venv/bin/activate

pip を更新する

\$ python3 -m pip install pip --upgrade

▶ cif2x をリポジトリから取得してインストールする

\$ git clone https://github.com/issp-center-dev/cif2x.git \$ cd cif2x

\$ python3 -m pip install .