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(1) spin 1/2 dimer (fulldiag) 
(2) spin 1/2 chain (Lanczos+LOBCG+Spectrum) 
(3) J1-J2 Heisenberg model(Lanczos,TPQ) 
(4) Kitaev model (Lanczos,TPQ) 
(5) Hubbard chain (Lanczos,TPQ) 
(6) Model Estimation using COMBO



1. Calculate eigenvalues by full diagonalization method 
Emin=-3/4(singlet), Emax=1/4(triplet)  

2. Change S as 1,2/3,2  
    Emin=-S(S+1), Emax=S2 
3. Change the model to Hubbard model 
(half filling , Sz=0)  

4. Try to use Lanczos or LOBCG methods

(1) Heisenberg dimer, Hubbard dimer
H = J ~S0

~S1

H = �t(c†0�c1� + h.c.) + U(n0"n0# + n1"n1#)

E = 0, U,
U

2
⇥ (1±

p
1 + (4t/U)2)



(2) Heisenberg chain

H = J

X

hi,ji

SiSj

1. Calculate energies by Lanczos method (upto the 
lattice size L = 20) 

　→ Calculate energy gap Δ between the ground state 
and the first excited state. 
　→ Plot 1/L - Δ. 
2. Do the same calculation on S=1 Heisenberg model. 
   (Haldane gap) 
3. Check the difference of eigenvalues obtained by 
Lanczos and LOBCG methods at high magnetic field. 
4. Calculate the spectrum function: S(q, ω).



(3) J1-J2 Heisenberg model
H = J1

X

hi,ji

SiSj + J2

X

hhi,jii

SiSj

1. Calculate energies by Lanczos method (L ～ 4×4) 
2. Calculate specific heat by TPQ method (J2/J1~0.5) 
3. Calculate spin-spin correlations.

L = 4 
W = 4 
model = "Spin" 
method = "Lanczos" 
lattice = "square lattice" 
J = 2.0 
J’ = 1.0 
2Sz = 0

Example script



(4) Kitaev model

1. Calculate energy by Lanczos method (L~18) 
2. Calculate specific heat by TPQ 
3. Calculate spin-spin correlation for nearest-neighbor 
bond (check the value becomes exactly 0).

W = 3 
L = 3 
model = "SpinGC" 
method = "Lanczos" 
lattice = "Honeycomb" 
J0x = -1.0 
J0y =  0.0 
J0z =  0.0 
J1x =  0.0 
J1y = -1.0 
J1z =  0.0 
J2x =  0.0 
J2y =  0.0 
J2z = -1.0
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Example script



(5) Hubbard chain 

H = �t

X

hi,ji

(c†i�cj� + h.c.) + U

X

i

ni"ni#

L = 8 
model = "FermionHubbard" 
method = "Lanczos" 
lattice = "chain" 
t = 1.0 
U = 8.0 
nelec = 8 
2Sz = 0

1. Calculate energies and double occupancy by Lanczos method ( L = 8) 
2. Calculate specific heat and double occupancy by TPQ method 
3. Compare the results obtained by TPQ method with that obtained by 
Full diagonalization method.

Example script



(6) Model estimation by using COMBO

1. Calculate the magnetization curve by using Lanczos 
method at (J1, J2, J3) = (1.0, 0.5, 0.3). 

2. To obtain the answer (J1, J2, J3) = (1.0, 0.5, 0.3) by 
comparing the magnetization curve for the parameter 
pair, model estimation using bayesian optimization 
library COMBO is performed.

H =
12X

i=1

(J1Si · Si+1 + J2Si · Si+2 + J3Si · Si+3)
<latexit sha1_base64="d6sEmvZtdM0E31sEIQES6PcW4z0="></latexit>

One dimensional Heisenberg chain (12 sites)

For details, see python scripts  
ModelEstimation/model_estimation.py in HPhi-garally. 

https://github.com/issp-center-dev/HPhi-gallery




(1): Answer-1

L = 2 
model = "Spin" 
method = "FullDiag" 
lattice = "chain" 
J = 0.5 
2Sz = 0

1-1. Heisenberg dimer

Set J=0.5, since J is double 
counted due to the periodic 
boundary condition.

1-2. spin-S Heisenberg dimer

L = 2 
model = "Spin" 
method = "FullDiag" 
lattice = "chain" 
J = 0.5 
2Sz = 0 
2S =2

If you set 2S=2, the model becomes S=1 
spin model (The default value is 2S=1). 
Likewise, if you set 2S=3,2S=4, the 
model becomes S=3/2, S=2 spin model.



(1): Answer-II

L = 2 
model = "Hubbard" 
method = "FullDiag" 
lattice = "chain" 
t = 0.5 
U = 4 
2Sz = 0 
nelec = 2

1-3. Hubbard dimer

!

Set t=0.5, since t is double 
counted due to the periodic 
boundary condition.

1-4. Heisenberg dimer

L = 2 
model = "Spin" 
method = "Lanczos" 
lattice = "chain" 
J = 0.5 
2Sz = 0

By setting method=“Lanczos” (“CG”), 
calculation by Lanczos (LOBCG) method is done. 
(*) Though Lanczos method gives exact eigenvalue,  
an error message appears since the Hilbert space  
is too small and the convergence condition  
is not satisfied.

L = 2 
model = "Spin" 
method = "CG" 
lattice = "chain" 
J = 0.5 
2Sz = 0



(2): Answer-1

L = 12 
model = "Spin" 
method = "Lanczos" 
lattice = "chain" 
J = 1.0 
2Sz = 0

1-1. Heisenberg chain

Results: output/zvo_Lanczos_Step.dat  
E0＝-5.3873909174  ,E1= -5.0315434037 
ΔE= E1-E0 ~0.355 



(2) Answer-2

L = 12 
model = "Spin" 
method = "Lanczos" 
lattice = "chain" 
J = 1.0 
2Sz = 0 
2S = 2

1-2. Heisenberg chain

The L dependency of energy gap is left for practice. 



(2): Answer-3

L = 12 
model = "SpinGC" 
method = "Lanczos" 
lattice = "chain" 
J = 1.0 
H = 10.0

1-3. Heisenberg chain

H →SpinGC（Sz-free）

L = 12 
model = "SpinGC" 
method = "CG" 
lattice = "chain" 
J = 1.0 
H = 10.0 
exct =4

Lanczos → not correct (degeneracy appears) 
stp = 74 -57.0000000000 -56.9998301292  
stp = 76 -57.0000000000 -56.9999967206 
stp = 78 -57.0000000000 -56.9999998797

CG → correct 
i=    0 Energy=-57.000000 N= 12.000000 
i=    1 Energy=-49.000000 N= 12.000000 
i=    2 Energy=-48.866025 N= 12.000000 
i=    3 Energy=-48.866025 N= 12.000000



(2):Answer-4
1-4. Calculation of S(q,ω) 
https://github.com/issp-center-dev/HPhi-gallery/tree/master/Spin/HeisenbergSpectrum

The spectrum function can be calculated by following steps.

1. Calculate the ground state.

2. Define excitation operators in the pair.def file.

3. Calculate spectrum function.


See the manual for details. To simply do above steps, we prepare the script file 
spinchain_example.py. In the following, we show the procedure to obtain the 
specrum function by using the script file.


1.Execute the script file (spinchain_example.py) 
$ python spinchain_example.py 

3. Plot spectrum.dat by gnuplot. 
$ gnuplot 

4. $ set yrange [0:5] 
5. $ set pm3d map 
6. $ splot "./spectrum.dat" using 1:2:3 
7. You can see the right figure, where horizontal  

and vertical axises correspond to the index of wave vector and frequency, 
respectively.



(3): Answer-1

4746 E. DAGOTTO AND A. MOREO

momentum very close to the ground state. They may easi-
ly become degenerate or cross in the thermodynamic limit.
To study this excited (singlet zero momentum) state

with our numerical method we need to use as a starting
configuration a state orthogonal to the ground state. In
principle, that can be accomplished by selecting as a trial
function the state

~ y&,; ~&
= ~p& (p~ leap& ~ I/fp&, where ~ p&

is arbitrary (as long as its projection on the excited state is
nonzero) and

~ yo& is the ground state previously calculat-
ed. However, we found that in practice it is simpler to ob-
tain an orthogonal state by inspection of the ground state.
For example, if two states

~ ai&, ( a2& of the S, basis ap-
pear in the ground state with weights ai, a2, respectively,
then a state orthogonal to the ground state is

~ y&„,,~&=
( a ~ &
—a~/az ~

a 2&. This is the method we used and, in
general, it produces good results. For example, evaluating
the ground-state energy Eo with error 10 we get an ac-
curacy of 10 in the energy of the first excited state. If
we continue the iterations after an error of 10 is
reached, the state decays into the ground state because
originally it had a projection on the ground state due to
small errors in a~, az. We can generalize these ideas for
higher excited states, but of course the accuracy of each

—1.0

new excited state is poorer than the previous one.
Applying this technique we found the remarkable result

shown in Fig. 4(a) (some special values of the energies are
also presented in Table I). In the region Jz= (1.1, 1.5)
there is another singlet state with zero momentum (E~),
very close to the ground state. Note that the gap between
these two states is much smaller than the gap between the
triplet (ET) and the singlet (Eo) states at J2 =0 (see also
Fig. 2) which we know will become degenerate in the ther-
modynamic limit. In Fig. 4(a) we also show some points
corresponding to a second excited state (E2). Those
values have error bars because of the difFiculty in stabiliz-
ing the state against a decay into the ground state. '
One possibility is that the two almost degenerate states

are the equivalent of the Neel states yo and y& of Fig. 1
with a small gap opened between them (which is possible
since they have the same quantum numbers). However, if
an interchange of states effectively has occurred then the
excited state should have magnetic properties opposite to
those of the ground state, as yo and y~ have on the 8-site
lattice. We have evaluated the magnetizations in the ex-
cited state and they are qualitatively very similar to those
of the ground state, not the opposite.
Then we have a more interesting situation where on a

finite region of parameter space the lowest-lying levels
above the ground state are singlets rather than triplets.
Consider, for example, the following scenario: Suppose
that the states whose energies are denoted by Eo and E2
(or some other excited state) in Fig. 4(a) correspond to
the states yo and y~ on the 8-site lattice (Fig. 1) with a
gap opened. Then the singlet (E~) of Fig. 4(a) is in
correspondence with y2 of Fig. 1 which was degenerate
with the ground state at one-point on the 8-site lattice. '
Then in the interval J2= (1.1, 1.5) we may have a new
disordered ground state' ' (the staggered magnetiza-
tions are very small in that region). The "one point" new
phase of the 8-site lattice corresponds now to a finite re-
gion.
It is very dificult to imagine that the fact that the

lowest-lying excited states are singlets rather than triplets
can be a finite-size efI'ect. Then, we conjecture a phase di-
agram for this model as shown in Fig. 4(b). Since the
magnetizations behave very smoothly we expect second-

1.30.8 1.0 '1.4

0.0
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TABLE I. Ground-state energy (Ep) and first excited-state
energy (E~) per site (both singlets with zero momentum) of the
2D Heisenberg model with frustration as a function of J2 on a
4X41attice. The error is in the last digit.

ordered
(Neel)

disordered
(spin liquid?)

ordered(¹elin
each

sublattice)
FIG. 4. (a) Ground-state energy (Eo) and first excited-state

energy (E~) (per site) on a 4&4 lattice as a function of Jz near
the degeneracy region. Also shown is the second excited-state
energy (Ez). The three states are singlets with k=(0,0). For
comparison, we also show the triplet (ET) and singlet (Es)
states of Fig. 2. (b) Possible phase diagram of the Heisenberg
model with frustration in the thermodynamic limit.

0.950
1.100
1.150
1.200
1.325
1.400
1.500
1.600
1.750

Ep
—1.065 978—1.047 189—1.047 183—1.051 792—1.089 305—1.127716—1.188 546—1.254670—1.358437

—1.0160—1.0254—1.0307—1.0380—1.0804—1.1169—1.1691—1.2233—1.3072

J1-J2 Heisenberg model, Ns=4×4, J1=2.0 
E. Dagotto and A. Moreo, PRB (R) 39 , 4744 (1989)



(5): Answer
Comparison of FullDiag, TPQ, Lanczos method 
Hubbard model, L=8, U/t=8, half filling, Sz=0
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TPQ method works well !


