Exercise of НФ

Takahiro Misawa, Kazuyoshi Yoshimi ISSP, Univ. of Tokyo (PCoMS PI)
(1) spin $1 / 2$ dimer (fulldiag)
(2) spin $1 / 2$ chain (Lanczos+LOBCG+Spectrum)
(3) J1-J2 Heisenberg model(Lanczos,TPQ)
(4) Kitaev model (Lanczos,TPQ)
(5) Hubbard chain (Lanczos,TPQ)
(6) Model Estimation using COMBO

(1) Heisenberg dimer, Hubbard dimer

$$
\begin{aligned}
& H=J \vec{S}_{0} \vec{S}_{1} \\
& H=-t\left(c_{0 \sigma}^{\dagger} c_{1 \sigma}+\text { h.c. }\right)+U\left(n_{0 \uparrow} n_{0 \downarrow}+n_{1 \uparrow} n_{1 \downarrow}\right)
\end{aligned}
$$

1. Calculate eigenvalues by full diagonalization method $E_{\text {min }}=-3 / 4$ (singlet), $E_{\text {max }}=1 / 4$ (triplet)
2. Change S as $1,2 / 3,2$ $\mathrm{E}_{\text {min }}=-\mathrm{S}(\mathrm{S}+1), \mathrm{E}_{\text {max }}=\mathrm{S}^{2}$
3. Change the model to Hubbard model (half filling , $\mathrm{Sz}=0$)

$$
E=0, U, \frac{U}{2} \times\left(1 \pm \sqrt{1+(4 t / U)^{2}}\right)
$$

4. Try to use Lanczos or LOBCG methods

(2) Heisenberg chain

$$
H=J \sum_{\langle i, j\rangle} S_{i} S_{j}
$$

1. Calculate energies by Lanczos method (upto the lattice size $\mathrm{L}=20$)
\rightarrow Calculate energy gap Δ between the ground state and the first excited state.
\rightarrow Plot $1 / \mathrm{L}-\Delta$.
2. Do the same calculation on $\mathrm{S}=1$ Heisenberg model.
(Haldane gap)
3. Check the difference of eigenvalues obtained by Lanczos and LOBCG methods at high magnetic field. 4. Calculate the spectrum function: $\mathrm{S}(\mathrm{q}, \omega)$.

(3) J1-J2 Heisenberg model

$$
H=J_{1} \sum_{\langle i, j\rangle} S_{i} S_{j}+J_{2} \sum_{\langle\langle i, j\rangle\rangle} S_{i} S_{j}
$$

1. Calculate energies by Lanczos method ($\mathrm{L} \sim 4 \times 4$)
2. Calculate specific heat by TPQ method (J2/J1~0.5)
3. Calculate spin-spin correlations.

Example script

$$
\begin{aligned}
& \mathrm{L}=4 \\
& \mathrm{~W}=4 \\
& \text { model }=\text { "Spin" } \\
& \text { method }=\text { "Lanczos" } \\
& \text { lattice }=\text { "square lattice" } \\
& \mathrm{J}=2.0 \\
& \mathrm{~J}=1.0 \\
& 2 \mathrm{Sz}=0
\end{aligned}
$$

(4) Kitaev model

$$
H=-J_{x} \sum_{x-\text { bond }} S_{i}^{x} S_{j}^{x}-J_{y} \sum_{y-\text { bond }} S_{i}^{y} S_{j}^{y}-J_{z} \sum_{z-\text { bond }} S_{i}^{z} S_{j}^{z}
$$

1. Calculate energy by Lanczos method (L~18)
2. Calculate specific heat by TPQ
3. Calculate spin-spin correlation for nearest-neighbor bond (check the value becomes exactly 0).

Example script

```
W = 3
L = 3
model = "SpinGC"
method = "Lanczos"
lattice = "Honeycomb"
J0x = -1.0
J0y = 0.0
J0z = 0.0
J1x = 0.0
J1y = -1.0
J1z = 0.0
J2x = 0.0
J2y = 0.0
J2z = -1.0
```


(5) Hubbard chain

$$
H=-t \sum_{\langle i, j\rangle}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { h.c. }\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

1. Calculate energies and double occupancy by Lanczos method ($\mathrm{L}=8$)
2. Calculate specific heat and double occupancy by TPQ method
3. Compare the results obtained by TPQ method with that obtained by Full diagonalization method.

Example script

$$
L=8
$$

model = "FermionHubbard"
method = "Lanczos"
lattice = "chain"

$$
t=1.0
$$

$$
U=8.0
$$

$$
\text { nelec }=8
$$

$$
2 \mathrm{Sz}=0
$$

(6) Model estimation by using COMBO

One dimensional Heisenberg chain (12 sites)

$$
H=\sum_{i=1}^{12}\left(J_{1} S_{i} \cdot S_{i+1}+J_{2} S_{i} \cdot S_{i+2}+J_{3} S_{i} \cdot S_{i+3}\right)
$$

1. Calculate the magnetization curve by using Lanczos method at (J1, J2, J3) $=(1.0,0.5,0.3)$.
2. To obtain the answer $(\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3)=(1.0,0.5,0.3)$ by comparing the magnetization curve for the parameter pair, model estimation using bayesian optimization library COMBO is performed.

For details, see python scripts
ModelEstimation/model_estimation.py in HPhi-garally.

(1): Answer-1

1-1. Heisenberg dimer

$$
\begin{aligned}
& L=2 \\
& \text { model }=\text { "Spin" } \\
& \text { method }=\text { "FullDiag" } \\
& \text { lattice }=\text { "chain" } \\
& J=0.5 \\
& 2 S z=0
\end{aligned}
$$

Set $J=0.5$, since J is double counted due to the periodic boundary condition.

1-2. spin-S Heisenberg dimer

```
L = 2
model = "Spin"
method = "FullDiag"
lattice = "chain"
J = 0.5
\(2 \mathrm{Sz}=0\)
\(2 \mathrm{~S}=2\)
```

If you set $2 S=2$, the model becomes $S=1$ spin model (The default value is $2 \mathrm{~S}=1$). Likewise, if you set $2 \mathrm{~S}=3,2 \mathrm{~S}=4$, the model becomes $S=3 / 2, S=2$ spin model.

(1): Answer-II

1-3. Hubbard dimer

$L=2$
model = "Hubbard"
method = "FullDiag"
lattice = "chain"
$t=0.5$
$U=4$
$2 \mathrm{Sz}=0$
nelec = 2

Set $\mathbf{t}=0.5$, since t is double counted due to the periodic boundary condition.

1-4. Heisenberg dimer

```
\(\mathrm{L}=2\)
model = "Spin"
method = "Lanczos"
lattice = "chain"
J = 0.5
\(2 \mathrm{Sz}=0\)
L = 2
model = "Spin"
method = "CG"
lattice = "chain"
J = 0.5
\(2 \mathrm{Sz}=0\)
```

By setting method="Lanczos" ("CG"), calculation by Lanczos (LOBCG) method is done. (*) Though Lanczos method gives exact eigenvalue, an error message appears since the Hilbert space is too small and the convergence condition is not satisfied.

(2): Answer-1

1-1. Heisenberg chain

Results: output/zvo_Lanczos_Step.dat $\mathrm{E} 0=-5.3873909174, \mathrm{E} 1=-5.0315434037$
$\Delta \mathrm{E}=\mathrm{E} 1-\mathrm{E} 0 \sim 0.355$
Results: output/zvo_Lanczos_Step.dat
$\mathbf{E} 0=\mathbf{- 5 . 3 8 7 3 9 0 9 1 7 4 , E}=\mathbf{- 5 . 0 3 1 5 4 3 4 0 3 7}$
$\Delta \mathrm{E}=\mathrm{E} 1-\mathrm{E} 0 \sim 0.355$
-

```
L = 12
```

L = 12

```
L = 12
model = "Spin"
model = "Spin"
model = "Spin"
method = "Lanczos"
method = "Lanczos"
method = "Lanczos"
lattice = "chain"
lattice = "chain"
lattice = "chain"
J = 1.0
J = 1.0
J = 1.0
2Sz = 0
```

2Sz = 0

```
2Sz = 0
```


(2) Answer-2

1-2. Heisenberg chain

$$
\begin{aligned}
& L=12 \\
& \text { model }=\text { "Spin" } \\
& \text { method }=\text { "Lanczos" } \\
& \text { lattice }=\text { "chain" } \\
& J=1.0 \\
& 2 S z=0 \\
& 2 S=2
\end{aligned}
$$

The L dependency of energy gap is left for practice.

(2): Answer-3

1-3. Heisenberg chain

```
L = 12
model = "SpinGC"
method = "Lanczos"
lattice = "chain"
J = 1.0
H = 10.0
```

$$
\begin{aligned}
& \mathrm{L}=12 \\
& \text { model }=\text { "SpinGC" } \\
& \text { method }=\text { "CG" } \\
& \text { lattice }=\text { "chain" } \\
& J=1.0 \\
& H=10.0 \\
& \text { exct }=4
\end{aligned}
$$

H \rightarrow SpinGC (Sz-free)
Lanczos \rightarrow not correct (degeneracy appears)
stp $=74-57.0000000000-56.9998301292$
stp $=76-57.0000000000-56.9999967206$
stp $=78$-57.0000000000 -56.9999998797
CG \rightarrow correct
i= 0 Energy $=-57.000000 \mathrm{~N}=12.000000$
i= $\quad 1$ Energy=-49.000000 N= 12.000000
i= 2 Energy=-48.866025 N= 12.000000
$i=\quad 3$ Energy $=-48.866025 \mathrm{~N}=12.000000$

(2):Answer-4

1-4. Calculation of $S(q, \omega)$

https://github.com/issp-center-dev/HPhi-gallery/tree/master/Spin/HeisenbergSpectrum
The spectrum function can be calculated by following steps.

1. Calculate the ground state.
2. Define excitation operators in the pair. def file.
3. Calculate spectrum function.

See the manual for details. To simply do above steps, we prepare the script file spinchain_example.py. In the following, we show the procedure to obtain the specrum function by using the script file.

1. Execute the script file (spinchain_example.py) \$ python spinchain_example.py
2. Plot spectrum. dat by gnuplot. \$ gnuplot
3. \$ set yrange [0:5]
4. \$ set pm3d map
5. \$ splot "./spectrum.dat" using 1:2:3
6. You can see the right figure, where horizontal
 and vertical axises correspond to the index of wave vector and frequency, respectively.

(3): Answer-1

$J_{1}-J_{2}$ Heisenberg model, $N \mathrm{~s}=4 \times 4, J_{1}=2.0$
E. Dagotto and A. Moreo, PRB (R) 39 , 4744 (1989)

TABLE I. Ground-state energy (E_{0}) and first excited-state energy (E_{1}) per site (both singlets with zero momentum) of the 2D Heisenberg model with frustration as a function of J_{2} on a 4×4 lattice. The error is in the last digit.

J_{2}	E_{0}	E_{1}
0.950	-1.065978	-1.0160
1.100	-1.047189	-1.0254
1.150	-1.047183	-1.0307
1.200	-1.051792	-1.0380
1.325	-1.089305	-1.0804
1.400	-1.127716	-1.1169
1.500	-1.188546	-1.1691
1.600	-1.254670	-1.2233
1.750	-1.358437	-1.3072

(5): Answer

Comparison of FullDiag, TPQ, Lanczos method Hubbard model, $L=8, U / t=8$, half filling, $S_{z}=0$

TPQ method works well !

