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背景: 強相関電子系の広がり
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幾何学的フラストレーションを持つ多くの磁性体において, 従来のスピングラス理論では説明が難しい奇妙なスピングラス挙動が観
測されている. 本稿では, パイロクロア反強磁性体に着目し, 交換相互作用の乱れに加えてスピンと格子歪みの結合の効果を調べた理
論研究を紹介する. フラストレーション系に本質的に潜む乱れに対する敏感さと, スピン格子結合によるスピン コリニアリティの発
達とそれに伴う熱揺らぎの抑制から, こうした奇妙な振舞いの多くが理解出来ることを示す.

1. はじめに：磁性体における乱れと幾何学的フ
ラストレーション
磁性体が示す多彩な磁性現象は, 物性物理学だけでなく,

素粒子・宇宙物理学, 情報学, 経済学, 社会学など多くの分
野で関心が持たれている. 多彩な磁性現象は, 切り口を変え
ることで様々な面を見せてくれるが, ここでは乱れと幾何
学的フラストレーションの 2つの軸で切ってみよう (図 1
の表).1) 表の左上は, 強磁性や反強磁性など, 局所的に決め
られる磁気配置の繰り返しによって表すことのできる磁気
秩序状態である. ここに磁性原子の配置乱れなどに起因し
た磁気相互作用の不均一性 (図中の縦軸)を入れていくと,
均一な系で見られた周期的な磁気構造は不安定となり，代
わりにスピンが乱雑な向きに凍結したスピングラスが現れ
る.2) 一方, 横軸の幾何学的フラストレーションとは, スピン
間の磁気相互作用が形成する幾何学的形状から生じる競合
のことをいう.3) 最も簡単な例のひとつに, 三角格子上のイ
ジングスピン系で最近接ペアにのみ反強磁性相互作用が働
いている場合がある. この場合, 全ての相互作用を満足する
スピン配置は存在しないため, 最低エネルギーをもつ異な
るスピン配置が無数に現れる. この例のように幾何学的フ
ラストレーションをもつ磁性体では, 一般に多数の低エネ
ルギー状態が存在するため, 低温までスピンが強く揺らい
だ状態が現れうる. ここでは, 乱れを伴わないフラストレー
ションによって秩序化が強く抑えられた結果現れるさまざ
まな非自明な現象を, 幾何学的フラストレート磁性として
表の右上に分類している.
乱れと幾何学的フラストレーションの個々の効果は, それ

ぞれ長い研究の歴史を持ち, その中で様々な興味深い現象
が明らかにされてきた. では, 両者が共存した場合にはどの
ような現象が起きるのだろうか？これが本稿で取りあげる
状況であり, 図 1の残る右下のマスに対応する. 実験的に
は, 多くの幾何学的フラストレート磁性体においてスピン
グラス転移が普遍的に観測されている. 一方, 理論的には,
幾何学的フラストレーションのみからスピングラスが生じ
ることは難しいと考えられている. そのため, 幾何学的フラ
ストレート磁性体に対する乱れの効果に注目が集まってい
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図 1 磁性現象を分類した表. 左上がよく知られている強磁性や反強磁性
など通常の磁気秩序に対応する. 磁気秩序を壊し, 非自明な現象を起こす
効果として, 乱れによる磁気相互作用の競合 (縦軸) と幾何学的フラスト
レーション (横軸) を考えている. 本稿で取り扱うのは, その 2 つの効果
が共存する右下のマスに対応する状況である.

る. 実際, 近年の理論研究から, 幾何学的フラストレート磁
性体は乱れの影響に本質的に敏感であり, スピングラスが
普遍的に現れうることが分かってきた. ところが, 実験結果
を眺めると, 乱れの効果だけでは理解しがたい興味深い性
質が散見される. これらの問題を解決するため, 我々は, ス
ピン格子結合が及ぼす影響に着目した研究を行った. 以下
では, これらの研究成果を通じて, 幾何学的フラストレート
磁性体に現れるユニークなスピングラス現象の多くが説明
されることを紹介する.

2. パイロクロア反強磁性体における乱れの効果
ここでは, 強い幾何学的フラストレーションを持つ系とし

て, 図 2に示すような正四面体が頂点共有したネットワーク
からなるパイロクロア格子と呼ばれる構造に注目する. こ
れは, パイロクロア化合物やスピネル化合物など, 広範な物
質系に見られる基本的な格子構造である. 例として, 最近接
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第一原理計算とは？
密度汎関数理論 P. Hohenberg and W. Kohn (1964) 

W. Kohn and L. J. Sham (1965)

• 様々な近似: 局所密度近似(LDA)、一般化勾配近似 (GGA) 

• 全電子計算 or not 

• 基底関数の種類: 平面波＋α、FP-LAPW、数値原子基底

全電子計算 基底関数

VASP N PAW

Quantum ESPRESSO N PAW

Wien2k Y FP-LAPW

OpenMX N 数値原子基底

Free

Free

Abinit, Elk, AkaiKKR, QMAS, etc.



Quantum ESPRESSO
https://www.quantum-espresso.org

• 擬ポテンシャル法 
• Wannier90との連携 

(symmetry-adapted Wannier 
functions)



OpenMX
http://www.openmx-square.org

• 擬ポテンシャル＋数値原子軌道基底 
• 大規模系の計算 
• Wannier90との連携 
• 対称操作は無し



計算物性物理　Computational condensed matter physics

ハイパフォーマンスコンピューティング

モデル計算 第一原理計算

現実のシュレディンガー方程式を忠実に 
解き、物質の「個性」を定量的に再現

物理現象の本質をとらえた簡
潔な模型を解析

独自アルゴリズムによって計算物理学のフロンティアを開拓

相互作用する多数の電子が起こす非自明な集団運動 
磁性、超伝導、金属絶縁体転移、トポロジカル相

(a)

ハバード模型、スピン模型 密度汎関数理論、バンド計算

C++/Python/Fortran、並列コンピューティング 

量子モンテカルロ法、動的平均場近似法

共同研究 
東大、スイス連邦工科大学チューリッヒ校、フリブール大学 (スイス)、
エコール・ポリテクニーク (フランス)など

密度汎関数理論＋動的平均場近似
G. Kotliar et al., RMP 78, 865 (2006)

動的平均場

相関効果が強い原子軌道への射影

•格子問題を量子不純物問題へマップ 
•動的物理量の計算:  スペクトル関数、動的感受率 
•摂動理論による拡張が可能 (DMFT+GWなど)

LDA/DFT+DMFT

⌃(k,!) ! ⌃(!)



計算できる量

A(k, ω) = −
1
π

ImG(k, ω + i0+)

McMahan et al., 2003

→光学実験との直接比較

Phase Diagram of Pyrochlore Iridates: All-in–All-out Magnetic Ordering and
Non-Fermi-Liquid Properties

Hiroshi Shinaoka,1,2 Shintaro Hoshino,3,2 Matthias Troyer,1 and Philipp Werner2
1Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland

2Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
3Department of Basic Science, The University of Tokyo, Meguro 153-8902, Japan
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We study the prototype 5d pyrochlore iridate Y2Ir2O7 from first principles using the local density
approximation and dynamical mean-field theory (LDAþ DMFT). We map out the phase diagram in the
space of temperature, on-site Coulomb repulsion U, and filling. Consistent with experiments, we find that
an all-in–all-out ordered insulating phase is stable for realistic values of U. The trigonal crystal field
enhances the hybridization between the jeff ¼ 1=2 and jeff ¼ 3=2 states, and strong interband correlations
are induced by the Coulomb interaction, which indicates that a three-band description is important. We
demonstrate a substantial band narrowing in the paramagnetic metallic phase and non-Fermi-liquid
behavior in the electron- or hole-doped system originating from long-lived quasi-spin-moments induced by
nearly flat bands.

DOI: 10.1103/PhysRevLett.115.156401 PACS numbers: 71.15.Mb, 71.15.Rf, 71.27.+a, 71.30.+h

The competition and cooperation between spin-orbit
coupling (SOC) and electron correlations induces novel
phenomena in 4d and 5d transition metal oxides such as
spin-orbit-assisted Mott insulators, topological phases, and
spin liquids [1]. The pyrochlore iridates A2Ir2O7 (A ¼ Pr,
Nd, Y, etc.) are an ideal system to study these phenomena
because their magnetic and electronic states can be tuned
by chemical substitution, pressure, and temperature (T).
Furthermore, intriguing phenomena such as correlated
topological phases have been theoretically predicted on
their geometrically frustrated crystal structure [1].
In 2001, it was reported that these compounds show a

crossover from metal to insulator with decreasing A3þ ionic
radii at high T [2] and a magnetic anomaly was found at
low T for small A3þ ionic radii [3]. For the metallic
compound A ¼ Pr, experiments revealed spin-liquid
behavior [4,5] and an unconventional anomalous Hall
effect [6]. On the other hand, the Ir magnetic ordering
has not been determined for a decade due to the strong
neutron absorption by Ir and large magnetic contributions
from rare-earth f moments on A3þ. The magnetic order has
only recently been identified as a noncollinear all-in–all-out
order [see Fig. 1(a)] [7–9].
Among the insulating compounds, Y2Ir2O7 has the

highest magnetic transition temperature and no f moments.
This makes this compound a prototype system for studying
strong electron correlations among 5d electrons. A pioneer-
ing local density approximation ðLDAÞ þ U study for this
compound showed that the all-in–all-out order is indeed
stable at large on-site repulsion U [10]. It also proposed a
topological Weyl semimetal as the ground state of some
compounds in this series. This stimulated further theoreti-
cal studies on the topological nature and unconventional

quantum criticality of 5d electrons on the pyrochlore lattice
[1,11–19].
In pyrochlore iridates, the Ir atoms form a frustrated

pyrochlore lattice, a corner-sharing network of tetrahedra
[see Fig. 1(a) and Ref. [20]]. The so-called jeff ¼ 1=2
picture was originally proposed for the insulating quasi-2D
compound Sr2IrO4 with the same electron configuration
5d5 [21,22]. The SOC splits the t2g manifold into a fully
occupied jeff ¼ 3=2 quartet and a half-filled jeff ¼ 1=2
doublet (ĵeff ≡ Ŝ − L̂ is the effective total angular momen-
tum, Ŝ and L̂ the spin and orbital momenta). This
picture was subsequently confirmed by LDAþ dynamical
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FIG. 1 (color online). (a) Pyrochlore lattice formed by Ir
atoms with arrows representing spin moments in the
all-in–all-out magnetic structure. (b) fcc unit cell with the
local coordinate axes and the energy diagram under SOC (ζ)
and the trigonal crystal field (Δtri). (c) LDA band structure
together with the density of states projected on the jeff basis.
The broken line shows the total density of states. The jeff ¼ 1=2
and jeff ¼ 3=2 bands consist mainly of the jeff ¼ 1=2 and
jeff ¼ 3=2 manifolds, but they are substantially hybridized
under the trigonal CF (see the text).
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U ¼ 2.3 eV at high T. In Fig. 2(a), we also show the first-
order Mott transition line obtained by paramagnetic DMFT
calculations. Apparently, the metal-insulator transition in
the magnetic DMFT phase diagram is assisted by magnetic
ordering. The insulating compound Y2Ir2O7, which has the
highest Tc in the family, may be located at U ≃ 2.5 eV.
At low T and small U, we find a first-order transition

between the paramagnetic metallic phase and the all-in–all-
out ordered insulating phase (both states are topologically
trivial). For Nd2Ir2O7, it was reported that its magnetic and
metal-insulator transition at Tc ¼ 33 K is second order
[43]. The first-order nature may be an artifact of the
LDAþ DMFT method. A previous LDAþ U study found
a Weyl semimetallic phase on the lower-U side of an all-in–
all-out ordered insulating phase [10]. In our DMFT phase
diagram, however, the semimetallic phase is taken over by
the insulating phase and there is a direct transition between
the paramagnetic metal and the magnetic insulator. This
appears to be a strong correlation effect.
Figure 3 shows the spectral function Aðk;ωÞ computed

for T ¼ 290 K. At U ¼ 2 eV (paramagnetic metal), the
upper manifold near the Fermi level shows a substantial
band narrowing from the LDA value of ≃1 eV down to
approximately 0.4 eV, while the lower manifold is smeared
out by correlation effects. The low-energy states consist
mainly of the jeff ¼ 1=2 orbitals for ω > 0. A similar
purification of the spectral function was found in

LDAþ DMFT studies of Sr2IrO4. At U ¼ 2 eV and U ¼
2.5 eV (all-in–all-out ordered insulator), no clear separa-
tion is seen between the jeff ¼ 1=2 and jeff ¼ 3=2 mani-
folds in the total spectral function AðωÞ.
We now investigate the effect of doping this insulating

solution. The electron filling n is changed from 4.6 to 5.8
(n ¼ 5 corresponds to the undoped compound). The all-in–
all-out order vanishes rapidly upon electron or hole doping
at n ¼ 4.8 and n ¼ 5.2, respectively. We plot ImΣðiωnÞ in
Fig. 4(a) for n ¼ 4.6 and n ¼ 5.6. In a Fermi liquid,
ImΣðiωnÞ vanishes linearly with ωn at low frequencies
(i.e.,∝ ωα

n with α ¼ 1) when T is sufficiently low. However,
for a rather wide range of frequencies, our data show that
ImΣðiωnÞ vanishes more slowly in the doped insulator. We
estimated the exponent α using the lowest two Matsubara
frequencies assuming ImΣðiωnÞ ¼ βωα

n. The result is shown
in Fig. 4(b) for different values of n. One sees a substantial
reduction ofα from1 aroundn ¼ 4.6 andn ¼ 5.8. This non-
Fermi-liquid (NFL) or bad metallic behavior persists down
to the lowest temperature considered (77 K).
Theoretically, it has been reported that NFL behavior

with a reduced power-law exponent in the frequency-
dependent self-energy can be induced by the Hund cou-
pling in multiorbital systems [44–46]. In the latter case,
ImΣðiωnÞ shows a nonzero intersect asωn → 0 close to half
filling, and a fractional power-law scaling appears at the
boundary between the NFL regime and the Fermi-liquid
regime [44]. This sharp crossover has been coined the
“spin-freezing transition,” because the scattering in the
NFL state is related to the appearance of long-lived local
moments. To see if the NFL behavior in the pyrochlore

(a) (b)

FIG. 2 (color online). (a) U-T phase diagram at half filling.
There is a first-order transition between the magnetic insulator and
the paramagnetic metal at low T and small U. The blue shaded
region denotes the hysteresis region associatedwith this transition.
The error bars reflect the uncertainty caused by the finite number
of parameter values considered. The metal-insulator crossover in
the high-T paramagnetic phase is shown by a broken line. The
hashed region represents the first-order Mott transition and its
hysteresis region in paramagnetic DMFT calculations. (b) temper-
ature dependence of the angular and magnetic moments along the
local [111] axis and the spectral weight at ω ¼ 0 for half filling.
Themoment values of the jeff ¼ 1=2 andϕ1 doublets are shown by
dotted and broken lines, respectively (see the text).
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FIG. 3 (color online). Momentum-resolved spectral function
Aðk;ωÞ at U ¼ 2 eV (paramagnetic metal) and U ¼ 2.5 eV (all-
in–all-out ordered insulator) at 290 K. The LDA band structure is
shown by red lines. On the right we plot the k-integrated spectral
function projected on the jeff basis (the broken line is the total
spectral function).
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スペクトル関数 複雑な磁気構造

M. Jarrell (1992), H. Park et al. (2011), L. 
Boehnke et al. (2011), J. Kuneš et al. (2017)

静的・動的感受率

構造緩和 K. Haule and G. L. Pascut (2016)

Y2Ir2O7



DFT+DMFTの計算スキーム
G. Kotliar et al., RMP 78, 865 (2006) 
 

バンド計算プログラム

(多軌道)量子不純物問題

電子密度 バンド構造

E

EF

3d orbitals

p orbitals

動
的平均場

局在軌道への射影 
最局在ワニア関数、射影
ワニア関数など

構造緩和には必須

http://hauleweb.rutgers.edu/tutorials/Overview.html


最局在ワニア関数

http://hauleweb.rutgers.edu/tutorials/Overview.html 
M. Aichorn et al., PRB 80, 085101 (2009)  
https://triqs.github.io/dft_tools/master/_downloads/TutorialDmftproj.pdf

Projectors

N. Marzari and D. Vanderbilt (1997), I. Souza et al. (2001)

SrVO3: M. Imada and T. Miyake (2010)

Fourier transform and analytic continuation of hLVð!Þ. In the
low frequency range that satisfies (1) hLVð!Þ # hLVð! ¼ 0 Þ
where the frequency dependence can be ignored, and (2) the
self-energy approximated as ! # Re !ð! ¼ 0 Þ þ ! d Re !=
d!j!¼ 0 , the retardation effect can be ignored and the
description by the Hamiltonian becomes adequate. This
corresponds to the case where the low-energy electrons can
be adiabatically treated under the high-energy electrons
moving fast. The renormalization effect can be ascribed to
the screening of the interaction and the mass enhancement
in the band dispersion given by the factor 1 =ð1 & d Re !=
d!j!¼ 0 Þ multiplying the bare dispersion "ðkÞ. In examples
of the transition metal compounds, the 3d bands of the
transition metal atom are relatively well isolated near the
Fermi level from others as we already mentioned. This makes
the description by a Hamiltonian appropriate after ignoring
the frequency dependence of the screening and the mass
enhancement within the range of the 3d bandwidth.20)

3.2 Wannier functions
To derive the low-energy effective model, one first needs

to define and specify the low-energy Hilbert space. In other
words, the first step of the downfolding is to construct a set
of localized orbitals that span the Hilbert space of the low-
energy electronic states. In the case of SrVO3 , for example,
three narrow states cross the Fermi level (Fig. 5). One may
then wish to pick up three localized orbitals and construct
three-orbital Hamiltonian that reproduces the (red) lines
crossing the Fermi level in the figure. There are several ways
for obtaining the localized orbitals. Here, we focus on
maximally localized Wannier functions (MLWF) developed
by Marzari, Souza, and Vanderbilt64,65) based on the
minimization of the quadratic extent of the orbitals. An
alternative approach is to use the Wannier orbitals of
Andersen.46) The former is more general because it does not
depend on any particular band-structure calculation method.
Comparison between the two Wannier functions for some
selected materials can be found in ref. 66. Although the
Wannier basis can be chosen arbitrarily in principle and the
final results of calculated physical quantities should not

depend on the choice, it is better to find maximally localized
orbitals to make the range of transfers and interactions in the
effective lattice models as short as possible.

Let f nkg be the eigenfunctions of the low-energy states.
Naively, the Wannier function is defined by

’nRðrÞ ¼
V

ð2#Þ3

Z
e& ik'R nkðrÞ d3 k: ð55Þ

This Wannier function is, however, ill-defined, because it
depends on the choice of the phase factor at each k point.
Moreover, at the band-crossing points it is not clear which
state should be taken. The MLWF utilizes this degrees of
freedom. The MLWF with band index n at cell R is defined by

’nRðrÞ ¼
V

ð2#Þ3

Z
e& ik'R ðwÞnk ðrÞ d

3 k: ð56 Þ

Here  ðwÞnk is not the eigenfunction of the Hamiltonian (e.g.,
Kohn–Sham wavefunction), but it is a linear combination of
the eigenfunctions as

 ðwÞnk ðrÞ ¼
X

m

UmnðkÞ mkðrÞ: ð57 Þ

The coefficients UmnðkÞ’s are numerically determined such
that the spread

" ¼
X

n

½h’n0jr2 j’n0i & h’n0jrj’n0i2 ); ð58 Þ

is minimized. In contrast with  nkðrÞ, the gauge of  (w)
nk ðrÞ is

fixed, and it is a smooth function of k. By representing the
Hamiltonian in the MLWF basis,

HmnðRÞ ¼ h’m0jHj’nRi; ð59 Þ

the on-site energy levels are obtained from m ¼ n;R ¼ 0
component. Other matrix elements give the transfer integrals.

3.3 Screened interaction
Now we discuss how to obtain the renormalization effects

on the low-energy electrons near the Fermi level more
concretely. After the partial trace and the elimination of
the high energy degrees of freedom given in eq. (51), the

Fig. 5. (Color online) Electronic structure of SrVO3 (left). The three states crossing the Fermi level (in red) can be treated as the low-energy part. The
corresponding maximally localized Wannier function is shown in the right panel. The Wannier function having the t2 g character is localized around the
V atom (at the center of the cube), with a tail at the O sites.
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波数、軌道に依存
したゲージ変換

• DFTコードが使う基底に依存しない 
• ワニア関数の最適化が必要

http://hauleweb.rutgers.edu/tutorials/Overview.html
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time evolution and compare its performance with that of the exact approach using a 
sparse-matrix exact-diagonalization technique.

Another direction of research is to develop a more efficient MC sampling algorithm. 
In the continuous-time MC method based on the hybridization expansion, one stochas-
tically samples configurations represented by creation and annihilation operators of the 
local degree of freedoms on the imaginary time interval. In estimating the weight of 
a configuration, the most costly part in multiorbital cases is evaluating the trace of a 
matrix product over the local degrees of freedom of the quantum impurity. This matrix 
product consists of imaginary-time evolution operators as well as creation and anni-
hilation operators. The cost of evaluating the trace grows as temperatures is lowered, 
because the expansion order increases.

The trace can be evaluated either by the matrix formalism [6, 18], by sparse-matrix 
exact-diagonalization techniques (Krylov method) [9] or by an MPS version of the Krylov 
method. In the former formalism, all operators are represented by matrices in the eigen-
basis of the local Hamiltonian and the matrix product is computed by multiplying the 
matrices one by one. In the latter formalism, the trace is computed by performing the 
imaginary-time evolution starting from eigenstates using the basis in which operators are 
represented as sparse matrices. In this paper, we call this the Krylov method or Krylov-
sparse-matrix method. It was shown that the Krylov method is superior in performance 
for impurity problems involving more than 4 orbitals as local degrees of freedom [9].

For the matrix formalism, an efficient MC sampling scheme based on a tree struc-
ture has been proposed to suppress the growth of the computational cost at low tem-
peratures [19]. Instead of recomputing the matrix product from scratch at each MC 
step, one reuses partial products of matrices that have been previously computed and 
stored. By using a tree data structure, the cost can then be reduced from O(β) to 
O (log β), where β is the inverse temperature. However, these ideas based on storing 
matrix products cannot be applied to the Krylov method. Thus, an alternative efficient 
MC sampling algorithm needs to be developed for the Krylov method.

The rest of the paper is organized as follows. In section 2, we describe the hybridiza-
tion expansion algorithm. The Krylov method is described in section 3. The quantum 
impurity models used for the present study are defined in section 4. In section 5, we 
propose a combined approach of the Krylov method and the matrix-product formalism. 
We propose an improved MC sampling algorithm for the Krylov method in section 6. 
A summary is given in section 7

2. Hybridization expansion algorithm

A fermionic quantum impurity model is defined by the following Hamiltonian:

H H H H= + + ,loc mix bath (1)

where

! ! ! ! !!∑ ∑= +
α β

α β α β
α β γ δ

α β γ δ
α β γ δH t c c U c c c c ,loc

,

,

, , ,

, , ,† † †
 (2)
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stored. By using a tree data structure, the cost can then be reduced from O(β) to 
O (log β), where β is the inverse temperature. However, these ideas based on storing 
matrix products cannot be applied to the Krylov method. Thus, an alternative efficient 
MC sampling algorithm needs to be developed for the Krylov method.

The rest of the paper is organized as follows. In section 2, we describe the hybridiza-
tion expansion algorithm. The Krylov method is described in section 3. The quantum 
impurity models used for the present study are defined in section 4. In section 5, we 
propose a combined approach of the Krylov method and the matrix-product formalism. 
We propose an improved MC sampling algorithm for the Krylov method in section 6. 
A summary is given in section 7
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A fermionic quantum impurity model is defined by the following Hamiltonian:
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†! !∑=
α

α α αH ε a a ,
k

k k kbath

,

, , , (3)

!!†∑= +
α β

α β
α βH V a c h.c.

k
k kmix

, ,

,
, (4)

The term Hloc describes an impurity with chemical potentials, intra-orbital hoppings 
and two-body interactions, where α and β are combined orbital and spin indices. 
(We call the combined index of spin and orbital a flavor.) Hbath describes a non-
interacting bath with quantum numbers k and flavor α. The hybridization term Hmix 
describes the exchange of electrons between the impurity and the bath.

In the hybridization expansion impurity solver, one expands the partition function 
H= β−Z Tr[e ] with respect to the hybridization term Hmix as

! !∫ ∫∑

∫

τ τ

= =
⎡

⎣
⎢
⎢

⎤
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= − ⎡
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β β τ τ
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τ
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β τ τ τ τ

− − −

=
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−H H
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Z TTr[e ] Tr e e

d d ( 1) Tr e e e ,
n

n
n

d ( )

0 0 1
( )

2
( )

2
n

n n n

1 0
2

1

1 1 1 1 1

 
(5)

where H H H= +1 loc bath and H H=2 mix and we employed the interaction picture.
In equation (5), the partition function Z is represented as the sum of all configura-

tions c = {τ1, …, τn} with weight

H HH H H!τ τ= − β τ τ τ τ− − − − −−w ( d ) Tr[e e e ]d .c
n n( )

2
( )

2
n n n1 1 1 1 1 (6)

The weight can be simplified further by exploiting the fact that the time evolution of 
the impurity and the bath are not coupled by H2. By tracing out the bath degrees of 
freedom, one obtains

!

! !

" " " "#
† †τ τ τ τ

τ α τ α τ α τ α τ

= ⎡
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× { } { } { } { }
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M d
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det ( , , , , ; , , , , )( ) .

c n n

n n
n

bath loc 1 1

1
1 1 1 1 1 1

2

n
n

loc

1
1

 
(7)

Here, !c  represents a configuration with annihilation operators at τ1<…<τn with flavor 
α1, …, αn and creation operators at τ′1<…<τ′n with flavor α′1, …, α′n. The matrix 
element of M− 1 at (i, j) is given by the hybridization function τ τ∆ ′−α α′ ( )i j,i j  defined in 
terms of εk, α and αVk

b, . The trace in equation (7) reduces to the form

!

!
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2
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( )
2

( )
2 1 1

n n n

n n n

2 loc 2 2 1 loc 1 loc

2 loc 2 2 1 loc 1 loc

 
(8)

where !" "O O, , n1 2  are time-ordered creation and annihilation operators appearing in 
equation (7). |Ψm〉 denotes an eigenstate of Hloc and the sum is over all eigenstates.
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where !" "O O, , n1 2  are time-ordered creation and annihilation operators appearing in 
equation (7). |Ψm〉 denotes an eigenstate of Hloc and the sum is over all eigenstates.
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time evolution and compare its performance with that of the exact approach using a 
sparse-matrix exact-diagonalization technique.

Another direction of research is to develop a more efficient MC sampling algorithm. 
In the continuous-time MC method based on the hybridization expansion, one stochas-
tically samples configurations represented by creation and annihilation operators of the 
local degree of freedoms on the imaginary time interval. In estimating the weight of 
a configuration, the most costly part in multiorbital cases is evaluating the trace of a 
matrix product over the local degrees of freedom of the quantum impurity. This matrix 
product consists of imaginary-time evolution operators as well as creation and anni-
hilation operators. The cost of evaluating the trace grows as temperatures is lowered, 
because the expansion order increases.

The trace can be evaluated either by the matrix formalism [6, 18], by sparse-matrix 
exact-diagonalization techniques (Krylov method) [9] or by an MPS version of the Krylov 
method. In the former formalism, all operators are represented by matrices in the eigen-
basis of the local Hamiltonian and the matrix product is computed by multiplying the 
matrices one by one. In the latter formalism, the trace is computed by performing the 
imaginary-time evolution starting from eigenstates using the basis in which operators are 
represented as sparse matrices. In this paper, we call this the Krylov method or Krylov-
sparse-matrix method. It was shown that the Krylov method is superior in performance 
for impurity problems involving more than 4 orbitals as local degrees of freedom [9].

For the matrix formalism, an efficient MC sampling scheme based on a tree struc-
ture has been proposed to suppress the growth of the computational cost at low tem-
peratures [19]. Instead of recomputing the matrix product from scratch at each MC 
step, one reuses partial products of matrices that have been previously computed and 
stored. By using a tree data structure, the cost can then be reduced from O(β) to 
O (log β), where β is the inverse temperature. However, these ideas based on storing 
matrix products cannot be applied to the Krylov method. Thus, an alternative efficient 
MC sampling algorithm needs to be developed for the Krylov method.

The rest of the paper is organized as follows. In section 2, we describe the hybridiza-
tion expansion algorithm. The Krylov method is described in section 3. The quantum 
impurity models used for the present study are defined in section 4. In section 5, we 
propose a combined approach of the Krylov method and the matrix-product formalism. 
We propose an improved MC sampling algorithm for the Krylov method in section 6. 
A summary is given in section 7

2. Hybridization expansion algorithm

A fermionic quantum impurity model is defined by the following Hamiltonian:

H H H H= + + ,loc mix bath (1)

where

! ! ! ! !!∑ ∑= +
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α β γ δ
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The term Hloc describes an impurity with chemical potentials, intra-orbital hoppings 
and two-body interactions, where α and β are combined orbital and spin indices. 
(We call the combined index of spin and orbital a flavor.) Hbath describes a non-
interacting bath with quantum numbers k and flavor α. The hybridization term Hmix 
describes the exchange of electrons between the impurity and the bath.

In the hybridization expansion impurity solver, one expands the partition function 
H= β−Z Tr[e ] with respect to the hybridization term Hmix as

! !∫ ∫∑

∫

τ τ

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − ⎡
⎣⎢

⎤
⎦⎥

β β τ τ

β

τ

β
β τ τ τ τ

− − −

=

∞
− − − − −

β

−

−H H

H H H

H H H

Z TTr[e ] Tr e e

d d ( 1) Tr e e e ,
n

n
n

d ( )

0 0 1
( )

2
( )

2
n

n n n

1 0
2

1

1 1 1 1 1

 
(5)

where H H H= +1 loc bath and H H=2 mix and we employed the interaction picture.
In equation (5), the partition function Z is represented as the sum of all configura-
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Here, !c  represents a configuration with annihilation operators at τ1<…<τn with flavor 
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where !" "O O, , n1 2  are time-ordered creation and annihilation operators appearing in 
equation (7). |Ψm〉 denotes an eigenstate of Hloc and the sum is over all eigenstates.

Bath

Hybridization 
expansion (CT-HYB)

Interaction expansion (CT-INT)
A. N. Rubtsov et al., PRB 
72, 035122 (2005)

Hybridization expansion Monte Carlo simulation of multi-orbital quantum impurity problems

5doi:10.1088/1742-5468/2014/06/P06012

J. S
tat. M

ech. (2014) P
06012
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The term Hloc describes an impurity with chemical potentials, intra-orbital hoppings 
and two-body interactions, where α and β are combined orbital and spin indices. 
(We call the combined index of spin and orbital a flavor.) Hbath describes a non-
interacting bath with quantum numbers k and flavor α. The hybridization term Hmix 
describes the exchange of electrons between the impurity and the bath.
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α1, …, αn and creation operators at τ′1<…<τ′n with flavor α′1, …, α′n. The matrix 
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where !" "O O, , n1 2  are time-ordered creation and annihilation operators appearing in 
equation (7). |Ψm〉 denotes an eigenstate of Hloc and the sum is over all eigenstates.

• Exact: A serious expansion of partition function 
• Sign problem in solving multi-orbital model 
• Parallel computing is necessary!

Review: E. Gull et al., RMP 83, 349 (2011)



Hubbard I approximation
J. Hubbard, Proc. Roy. Soc. London A276, 238 (1963) 

• Insulating solution at integer fillings 
• Multi-orbital systems 
• Real-frequency data 
• Can be ran on a laptop

Bath



既存のソフトウェア
TRIQS: A Toolbox for Research on Interacting 
Quantum Systems 
https://triqs.ipht.cnrs.fr/ 
‣ Green’s function libraries 
‣ Quantum impurity solvers 
‣ Interface with ab-initio codes

ALPSCore project 
https://alpscore.org 
‣ Continuous-time quantum impurity solvers 

- Hybridization-expasion algorithm  
HS, E. Gull, P. Werner (2017) 

- Interaction-expansion algorithm  
HS, Y. Nomura, E. Gull (2018)

iQIST (Interacting Quantum Impurity 
Solver Toolkit) 
https://github.com/iqist/iqist 
‣ Quantum impurity solvers

DFT + Embedded DMFT Functional 
http://hauleweb.rutgers.edu/tutorials/ 
Rutger’s university 
‣ Quantum impurity solvers 
‣ Charge self consistency with Wien2k 
‣ License issues

誰もが簡単に使えるようなソフトウェアが必
要　（理論家にも実験家にも)　→　DCore

Pythonでライブラリを組み合わせて、物
質、模型ごとにプログラムを作る必要あり

w2dynamics 
M. Wallerberger et al., arXiv:1801.10209v1  
‣ Quantum impurity solver



発表概要

1. 背景：強相関電子電子系 
2. 第一原理計算･動的平均場近似の概要 
3. DCoreの説明 

-概要 
-入力パラメータの概要



Development of DCore ver. 1.0

ref.) https://ma.issp.u-tokyo.ac.jp/en/app/1004

Development of DCore was 
proposed by H. Shinaoka in 2017.

DMFT calculations 
using TRIQS and ALPS

Predefined models

Wannier90 format

Pure Python implementation
GPLv3

Released in April 2018



‣ DCore 開発者 (自分は除く) 

‣ 必要環境 
- Python2.7 
- TRIQS 1.4 or 2.1+ 

C++14 (1.4) or C++17 (2.1+), gccもしくはclangが楽 

‣ ライセンス 

‣ 動作環境 
- Linux , OS Xでの動作確認済

DCore v2：基本情報

J. Otsuki N. Takemori K. Yoshimi M. Kawamura
Okayama univ. ISSP

Acknowledgments to T. Kato and Y. Motoyama

オープンソースソフトウェアなので、誰でも利用&貢献可能！

Released in May 2019



 DCore v2 機能一覧
‣ モデル 

- 格子形状 
- 標準的な格子：Bethe, chain, square, cubic lattice 
- Wannier90形式： DFT calculations with/without spin-orbit coupling 

- 相互作用 
-  Slater-Kanamori interaction, etc. 

‣ 自己無撞着計算 
- 非磁性計算、非共線磁気構造 

‣ 物理量 
- 自己エネルギー　Σ(iωn) 
- スペクトル関数　A(ω) , A(k, ω) 

‣ MPI並列 
‣ 対応量子不純物ソルバーの追加 

ALPS/CT-HYB, TRIQS/cthyb, TRIQS/Hubbard-Iに加えて、ALPS/CT-
HYB-SEGMENT, pomerolを追加

物理量は今後追加予定 
開発者としての参加を歓迎！

New

New

ソルバーの追加が簡単に



公式開発サイト
https://github.com/issp-center-dev/DCore

https://github.com/issp-center-dev/DCore


公式マニュアル
https://issp-center-dev.github.io/DCore/master/index.html

‣ インストール手順、入力・出力ファイル解説、パラメータ一覧、
サンプル、謝辞など

https://issp-center-dev.github.io/DCore/master/index.html


謝辞
https://issp-center-dev.github.io/DCore/master/index.html#authors-quotation

DCore v2の解説論文も準備中！

https://issp-center-dev.github.io/DCore/master/index.html#authors-quotation
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 計算の流れ
第一原理計算から導出したパラメータを使用する場合、 
Wannier90形式のファイルも用意 
(hopping, Interaction)

モデル生成：dcore_pre 
(出力: HDF5)

DMFT計算 ：dcore 
(出力: HDF5)

計算後処理： dcore_post 
(出力: テキスト、画像)

入力テキストファイルの作成

ハミルトニアン [H(k), 相互作用行列]データの生成

DMFT自己無撞着計算 
自己エネルギー等の出力

A(k, ω）等の計算や表示

 

収束チェック ：dcore_check  
(出力：標準出力、画像)

https://issp-center-dev.github.io/DCore/master/basicnotions/structure.html


入力ファイル

[model]：模型に関する設定 
格子 
軌道の数・種類 
電子数 
相互作用の種類 
相互作用の大きさ

[system]：系に関する設定 
虚時間の分点の数 
松原振動数の分点の数 
逆温度 
化学ポテンシャル  
etc…

[impurity_solver]：不純物ソルバーの設定 
TRIQS/hubbard-I, TRIQS/cthyb, 
ALPS/CT-HYBなど

[control]：DMFT計算条件の設定 
次のステップに進む際のmixingパラメータ 
DMFT-loopの最大ループ数 
再計算フラグ

[tool]：ポスト処理時の設定 
最大・最小実振動数 
k点の始点・終点と分点数 
振動数の虚部のシフト量 
etc.

全6つのblockから構成される

[mpi]：MPI並列計算の設定 
mpirunコマンド名など



レファレンスマニュアル
https://issp-center-dev.github.io/DCore/master/reference.html

各プログラムの入力・
出力ファイル

入力パラメータ一覧

出力ファイル

不純物ソルバー

https://issp-center-dev.github.io/DCore/master/reference.html


[model] block

 

https://issp-center-dev.github.io/DCore/master/reference.html


格
子

相
互
作
用

配
位
子
場



格子の種類



Correlated shellとinequivalent shell
3軌道・2原子系 (spin_orbit=False)

W
an

ni
er
軌
道
の

in
de

x

[model] 
ncor = 2 
norb = 3 
corr_to_inequiv = 0, 0 
spin_orbit = False

Corr. shell 0 
(inequivalent shell 0)

Corr. shell1 
(inequivalent shell 0)

自己エネルギーが 
コピーされる

W
an

ni
er
軌
道
の
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de

x

[model] 
ncor = 2 
norb = 3, 3 
spin_orbit = False

Corr. shell 0 
(inequivalent shell 0)

Corr. shell 1 
(inequivalent shell 1)

Uncorrelated 
orbitals

3軌道

3軌道

Uncorrelated 
orbitals

0
2

3
5

↑ ↓

↑ ≠0 0

↓ 0 ≠0

グリーン関数

デフォルト



Correlated shellとinequivalent shell
3軌道・2原子系 (spin_orbit=True)

[model] 
ncor = 2 
norb = 3 
corr_to_inequiv = 0, 0 
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道
の
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x

[model] 
ncor = 2 
norb = 3, 3 

Corr. shell 0 
(inequivalent shell 0)

Corr. shell 1 
(inequivalent shell 1)

Uncorrelated orbitals

↑ ↓

↑ ≠0 ≠0

↓ ≠0 ≠0

グリーン関数

Corr. shell 0 
(inequivalent shell 0)

Corr. shell 1 
(inequivalent shell 1)

Uncorrelated orbitals

↑

↓

W
an
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軌
道
の
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x

Corr. shell 0 
(inequivalent shell 0)

Corr. shell 1 
(inequivalent shell 0)

Uncorrelated orbitals

Corr. shell 0 
(inequivalent shell 0)

Corr. shell 1 
(inequivalent shell 0)

↑

↓

Uncorrelated orbitals



相互作用の種類

Slater型などの他のパラメータ化、ファイル入力もサポート

Slater-Kanamori相互作用

Inequivalent shell毎に設定可能



[system] block

 

https://issp-center-dev.github.io/DCore/master/reference.html


 

https://issp-center-dev.github.io/DCore/master/reference.html


[impurity_solver] block

 

https://issp-center-dev.github.io/DCore/master/reference.html


対応不純物ソルバー
General interaction 

(non density-
density) 

Spin-orbit coupling 備考

ALPS/CT-HYB ○ ○ 品岡等が開発

ALPS/CT-HYB-
SEGMENT - - 比較的高速

TRIQS/cthyb ○ △

TRIQS/hubbard-I ○ ○
Hubbard-I近似 (TRIQS 

1.4のみ)

pomerol ○ ○
Hubbard-I近似  

(Bathの離散化を次期バージョ
ンで追加）

ソルバー毎の解説 
https://issp-center-dev.github.io/DCore/master/impuritysolvers.html

https://issp-center-dev.github.io/DCore/master/impuritysolvers.html


 

‣ TRIQS/hubbard-I

‣ ALPS/CT-HYB 不純物ソルバー固有のパラメータを
指定可能 (型指定が必要)

https://issp-center-dev.github.io/DCore/master/impuritysolvers.html

不純物ソルバーの指定法

https://issp-center-dev.github.io/DCore/master/reference.html
https://issp-center-dev.github.io/DCore/master/impuritysolvers.html


[control] block

 

https://issp-center-dev.github.io/DCore/master/reference.html


 

https://issp-center-dev.github.io/DCore/master/reference.html


[tool] block

 

https://issp-center-dev.github.io/DCore/master/reference.html


 

https://issp-center-dev.github.io/DCore/master/reference.html


[mpi] block
 

dcore, dcore_post内部でMPIを起動するときに使われる

https://issp-center-dev.github.io/DCore/master/reference.html


 

https://issp-center-dev.github.io/DCore/master/reference.html

